Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
Abstract:
Disclosed herein are improvements in recycle gas cooler systems in gas-phase polymerization processes that reduce the tendency for cooler fouling, including a recycle gas cooler system comprising a shell-and-tube heat exchanger. One or more of the tubes of the shell-and-tube heat exchanger may have a flared tube inlet at the tube sheet. The shell-and-tube heat exchanger may also be coupled to a straight inlet pipe having a length that is either at least about 5 times the inner diameter of the straight inlet pipe or at least about 15 feet, whichever is greater.
Abstract:
Embodiments of the present disclosure are directed towards methods for rating polymerization processes based upon a first cracking index value and a second cracking index value.
Abstract:
Embodiments of the present disclosure are directed towards methods for rating polymerization processes based upon a first cracking index (value and a second cracking index value.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.