Digital RRAM-based convolutional block

    公开(公告)号:US11450385B2

    公开(公告)日:2022-09-20

    申请号:US16577309

    申请日:2019-09-20

    Abstract: One embodiment provides a resistive random-access memory (RRAM) based convolutional block including a complementary pair of RRAMs having a first RRAM and a second RRAM, a programming circuit coupled to the complementary pair of RRAMs, and a XNOR sense amplifier circuit coupled to the complementary pair of RRAMs. The programming circuit is configured to receive a kernel bit from a kernel matrix, program the first RRAM to at least one selected from a group consisting of a low resistive state (LRS) and a high resistive state (HRS) based on the kernel bit, and program the second RRAM to other of the LRS and the HRS. The XNOR sense amplifier circuit is configured to receive an input bit from an input matrix, perform a XNOR operation between the input bit and the kernel bit read from the complementary pair of RRAMs, and output a XNOR output based on the XNOR operation.

    DIGITAL RRAM-BASED CONVOLUTIONAL BLOCK
    2.
    发明申请

    公开(公告)号:US20200098428A1

    公开(公告)日:2020-03-26

    申请号:US16577309

    申请日:2019-09-20

    Abstract: One embodiment provides a resistive random-access memory (RRAM) based convolutional block including a complementary pair of RRAMs having a first RRAM and a second RRAM, a programming circuit coupled to the complementary pair of RRAMs, and a XNOR sense amplifier circuit coupled to the complementary pair of RRAMs. The programming circuit is configured to receive a kernel bit from a kernel matrix, program the first RRAM to at least one selected from a group consisting of a low resistive state (LRS) and a high resistive state (HRS) based on the kernel bit, and program the second RRAM to other of the LRS and the HRS. The XNOR sense amplifier circuit is configured to receive an input bit from an input matrix, perform a XNOR operation between the input bit and the kernel bit read from the complementary pair of RRAMs, and output a XNOR output based on the XNOR operation.

Patent Agency Ranking