Abstract:
Systems and methods for reducing beam instability in laser annealing are disclosed. The method includes: directing a conditioned laser beam through an opening in an aperture using a beam-redirecting element; forming a line image on the surface of the semiconductor wafer by imaging the aperture onto the surface, thereby locally heating the surface to form an annealing temperature distribution; detecting a thermal emission from the locally heated wafer surface; determining the annealing temperature distribution from the detected thermal emission; determining from the annealing temperature distribution a line-image intensity profile that includes a time-varying amount of slope; and adjusting the beam-redirecting element to redirect the laser beam to reduce or eliminate the time-varying amount of slope in the line-image intensity profile.
Abstract:
Systems and methods for reducing beam instability in laser annealing are disclosed. The method includes: directing a conditioned laser beam through an opening in an aperture using a beam-redirecting element; forming a line image on the surface of the semiconductor wafer by imaging the aperture onto the surface, thereby locally heating the surface to form an annealing temperature distribution; detecting a thermal emission from the locally heated wafer surface; determining the annealing temperature distribution from the detected thermal emission; determining from the annealing temperature distribution a line-image intensity profile that includes a time-varying amount of slope; and adjusting the beam-redirecting element to redirect the laser beam to reduce or eliminate the time-varying amount of slope in the line-image intensity profile.