Abstract:
A lighting system for a motor vehicle comprising at least one primary optical device for emitting a light beam exhibiting a cutoff profile, the primary optical emission device comprising at least one light source and one single-piece primary optical member comprising an input surface suitable for receiving a light beam emitted by the light source, a ray interception surface configured to form the cutoff profile in the light beam received and an output surface for the light beam.This system also comprises a projection device arranged downstream of the primary optical emission device(s) and comprising an input surface arranged facing the primary optical emission device(s), and through which are introduced rays of the light beam derived as output from the primary optical emission device(s); a single continuous output surface through which the light beam is projected.
Abstract:
A lighting system for a motor vehicle comprising at least one primary optical device for emitting a light beam exhibiting a cutoff profile, the primary optical emission device comprising at least one light source and one single-piece primary optical member comprising an input surface suitable for receiving a light beam emitted by the light source, a ray interception surface configured to form the cutoff profile in the light beam received and an output surface for the light beam.This system also comprises a projection device arranged downstream of the primary optical emission device(s) and comprising an input surface arranged facing the primary optical emission device(s), and through which are introduced rays of the light beam derived as output from the primary optical emission device(s) a single continuous output surface through which the light beam is projected.
Abstract:
A lighting system for a motor vehicle comprising at least one primary optical device for emitting a light beam exhibiting a cutoff profile, the primary optical emission device comprising at least one light source and one single-piece primary optical member comprising an input surface suitable for receiving a light beam emitted by the light source, a ray interception surface configured to form the cutoff profile in the light beam received and an output surface for the light beam. This system also comprises a projection device arranged downstream of the primary optical emission device(s) and comprising an input surface arranged facing the primary optical emission device(s), and through which are introduced rays of the light beam derived as output from the primary optical emission device(s); a single continuous output surface through which the light beam is projected.
Abstract:
An optical waveguide for the propagation of a light beam adapted to travel by successive total reflections off the faces of the waveguide to an output face where the light beam is refracted. One of the faces of the waveguide forms, facing towards the output face, a support face for a pattern extending across the main direction of the beam to divert same towards the output face. According to a characterizing feature of the invention, the pattern is a bifunctional reflective pattern that is integral with the support face, having three portions including end portions formed by cone portions between which there is interposed an intermediate portion that comprises two facets that meet at a top edge, which is not parallel to the support face for the patterns.
Abstract:
A light guide for a lighting and/or signaling device of an automobile vehicle comprising an entry face, a coupler, a main reflection face, and an exit face. The light guide is arranged in such a manner that, when a light source is disposed at a predetermined point with respect to the light guide, the entry face transmits the light from the light source to the coupler and the coupler transmits a part of this light to the main reflection face which directs it, in the form of a beam of parallel rays, directly or indirectly, toward the exit face in a direction forming an angle of 5° at the most with respect to the optical axis of the light guide.
Abstract:
A lighting system for a motor vehicle comprising at least one primary optical device for emitting a light beam exhibiting a cutoff profile, the primary optical emission device comprising at least one light source and one single-piece primary optical member comprising an input surface suitable for receiving a light beam emitted by the light source, a ray interception surface configured to form the cutoff profile in the light beam received and an output surface for the light beam. This system also comprises a projection device arranged downstream of the primary optical emission device(s) and comprising an input surface arranged facing the primary optical emission device(s), and through which are introduced rays of the light beam derived as output from the primary optical emission device(s) a single continuous output surface through which the light beam is projected.
Abstract:
A light module, notably for a motor vehicle, including a first reflecting surface), of the elliptical type, with a first focus and a second focus; a second reflecting surface, of the parabolic type, with a focus corresponding to the second focus of the first reflecting surface; light rays emitted by a first light source located at the first focus of the first reflecting surface being reflected by the first and second reflecting surfaces to form a first light beam; and a third reflecting surface adjacent to the second focus of the first reflecting surface and configured to reflect, towards the second reflecting surface, light rays emitted by a second light source, in order to form a second light beam.
Abstract:
The present invention relates to a lighting module for an automobile headlamp that is able to emit a cut-off light beam along a predetermined optical axis. The lighting module includes a light source for generating a beam and an optical element for receiving the beam generated by the light source and configured to form from this beam the cut-off light beam. The optical element has a collimator configured to receive the beam generated by the light source and to collimate this beam into a collimated beam. An optical coupler is configured to couple the collimated beam into a coupled beam in a lightguide. A cut-off means is disposed within the lightguide on the path of the rays of the coupled beam and configured to intercept a portion of the rays in the lightguide and to form a cut-off beam. At least one output face of the lightguide is configured to project the cut-off beam outside of the optical element, and the optical element is formed as a single part.
Abstract:
A light guide for a lighting and/or signaling device of an automobile vehicle comprising an entry face, a coupler, a main reflection face, and an exit face. The light guide is arranged in such a manner that, when a light source is disposed at a predetermined point with respect to the light guide, the entry face transmits the light from the light source to the coupler and the coupler transmits a part of this light to the main reflection face which directs it, in the form of a beam of parallel rays, directly or indirectly, toward the exit face in a direction forming an angle of 5° at the most with respect to the optical axis of the light guide.
Abstract:
A lighting and/or signaling device, notably for a motor vehicle, comprising at least one light source and one light guide, the source comprising a support and a plurality of light emitting components arranged on the support so as to emit a beam of light, the device being configured to direct the beam toward the guide, in which device the support is a printed circuit and/or the light emitting components are light emitting diodes, in which device the light emitting components are arranged in such a way as to define an emission surface for the beam of light on a face of the support, in which device the light source is configured so that the emission surface has a longitudinally extending axis, in which device the light guide comprises at least one emitting portion configured to emit light out of the guide, and at least one guide portion, situated between the source and the emitting portion, configured to transmit the beam of light from the source to the emitting portion.In one embodiment, the guide portion has a cross section that is smaller than that of the emitting portion.