Abstract:
A method for forming an isolated inner lead from a leadframe is revealed. The leadframe primarily comprises a plurality of leads, the isolated inner lead, and an external lead. Each lead has an inner portion having a finger. The isolated inner lead having two fingers is completely formed inside a molding area and is made of the same metal leadframe as the leads. One finger of the isolated inner lead and the fingers of the leads are linearly arranged. The other finger of the isolated inner lead is adjacent to a finger of the external lead. At least one of the inner portions divides the isolated inner lead from the external lead. The isolated inner lead is integrally connected to an adjacent one of the inner portions by a connecting block. A tape-attaching step is performed to mechanically connect the isolated inner lead where two insulating tapes are attached in a manner that the connecting block can be removed. Therefore, the isolated inner lead is electrically isolated from the leads and can be mechanically fixed to replace extra redistributing components during semiconductor packaging processes.
Abstract:
A LOC leadframe-based semiconductor package includes a chip with multiple rows of bonding pads. At least a bus bar is attached to the chip and is disposed between a first row of bonding pads and the fingers of the leads. A plurality of bonding wires electrically connect the first row of bonding pads to the fingers of the leads. The portion of the bus bar attached to the active surface of the chip includes a bent section bent away from the fingers. A long bonding wire electrically connects one of a second row of bonding pads to one of the fingers of the leads by overpassing the bent section. Therefore, the distance between the long bonding wire and the bus bar is increased to avoid electrical short between the long bonding wire and the bus bar and to enhance the quality of electrical connections of the LOC semiconductor package.
Abstract:
An IC package mainly includes a substrate having slot(s), a chip, a protective encapsulant, a stiffening encapsulant, and a plurality of external terminals. The Young's modulus of the stiffening encapsulant is greater than the one of the protective encapsulant and the curing shrinkage of the stiffening encapsulant is smaller than the one of the protective encapsulant. The protective encapsulant is formed on one of the surfaces of the substrate for encapsulating the chip. The stiffening encapsulant protrudes from the other surface of the substrate where the external terminals are disposed. Moreover, the stiffening encapsulant is formed inside the slot and is contacted with the chip. Since the stiffening encapsulant is embedded and formed inside the slot, therefore, the contact area of the stiffening encapsulant with the substrate is increased to enhance the warpage resistance of the IC package.
Abstract:
A chip packaging process integrates a burn-in test or a high temperature test to simplify overall packaging and testing process flow. One or more chips are disposed on one or more units of a substrate strip where the substrate strip has a plurality of electrical open sections at the plating lines to electrically isolate the external pads between different units. After electrical connection and encapsulation, a burn-in test is executed at the same time of a post mold curing step, with a high-temperature testing if necessary. Therefore, the chips on the substrate strip has been gone through the burn-in test during the encapsulant is completely cured at the post mold curing step and the burn-in test is finished before the singulation step to reduce the overall testing time.
Abstract:
A mounting assembly of semiconductor packages is revealed, primarily comprising at least a semiconductor package having a plurality of external terminals, a package carrier, and solder paste. The solder paste joints the external terminals to the package carrier. According to the distance to a central line on a substrate of the semiconductor package, the external terminals are divided into at least two different groups. In one of the embodiment, different groups of the external terminals are bumps with non-equal heights to achieve a uniform standoff plane to compensate the warpage of the substrate. The predicted substrate warpage can be compensated without causing any soldering defects. In another embodiment, a plurality of compensating bumps are selectively disposed on one group of the external terminals with larger stacking gaps.
Abstract:
A semiconductor chip substrate with solder pad includes: a core layer and at least one conductive structure formed on the surface of the core layer; an insulation layer with at least one patterned opening covering the conductive structure, wherein the patterned opening has a center portion and a plurality of wing portions on the peripheral edge of the center portion to define the exposed area of the conductive structure as the solder pad. The solder pad with wing will improve the adhesion effect between the solder pad and the solder ball.
Abstract:
A chip package and a lead frame used in the chip package are disclosed. The lead frame includes a plurality of first side leads and a plurality of second side leads where the first side leads have a plurality of first bent leads extending from a first edge and the second side leads have a plurality of second bent leads extending from a second edge. The inner ends of the first bent leads and the inner ends of the second bent leads are facing to a third edge between the first and second edges and are connected to the lead frame. Therefore, the lengths of the first side leads are equal and symmetrical to the ones of the second side leads without any suspended long leads for chip attachment. The chip package is most suitable for packaging chips with bonding pads on one single side.
Abstract:
An IC package keeping the attachment level of leads on chip during molding process, mainly comprises a plurality of leads of a Lead-On-Chip (LOC) leadframe, a chip adhered under the leads, a plurality of bonding wires electrically connecting the chip to the leads, a plurality of first supporting columns disposed above some of the leads, a plurality of second supporting columns disposed under the some of the leads and a molding compound. The molding compound encapsulates the chip, the bonding wires, inner portions of the leads and sides of the first and second supporting columns. Therein, the first and second supporting columns are longitudinally corresponding to each other and adjacent the chip. The thickness including one of the first supporting columns, a corresponding one of the second supporting columns and one of the leads disposed corresponding to the selected first supporting column and the selected second supporting column is approximately as same as that of the molding compound. By means of the supporting columns in the package, it is able to prevent the problems of chip displacement during molding process and exposure of chip backside or the bonding wires.
Abstract:
A PCB for mounting IC package is designed with dummy solder pads. Dummy solder pastes will spread on the dummy solder pads after screen printing process of solder paste. A substrate for a package of IC is designed with or without dummy solder pads. After mounting the package of IC onto the PCB, the dummy solder paste may or may not solder to the substrate of the package of IC. When the package of IC suffers external force, the dummy solder pastes can help provide supporting for the package of IC and increase the mechanical strength to avoid package or IC crack.
Abstract:
Disclosed is a method for forming an EMI shielding layer on all surfaces of a semiconductor package in order to enhance EMI shielding effect on all surfaces and to prevent electrical short to external terminals of the semiconductor package. According to the method, a temporary protective layer is formed on the external terminals where the temporary protective layer is further in contact with a plurality of annular surface regions of the semiconductor package surrounding and adjacent to the external terminals. Then, the EMI shielding layer is formed on the top surface, the bottom surface and the side surfaces of the semiconductor package without forming on the external terminals.