Abstract:
Provided is a gasoline product containing a combustion improver, and a method for preparing the gasoline product. The combustion improver is added to gasoline to reduce an octane number and thus an ignition point of the gasoline, so that the gasoline product can be used in a compression ignition internal combustion engine. The combustion improver-containing gasoline product is a low-octane number gasoline, and is capable of being ignited through compression by an internal combustion engine having a compression ratio in the range from 12 to 22.
Abstract:
Disclosed is a homogeneous charge compression ignition and diffusion compression ignition combined ignition control method for low-octane gasoline, using a diffusion compression ignition control mode as a forced ignition measure, to ignite a premixed homogeneous lean oil and gas mixture, and meanwhile to achieve homogeneous charge compression ignition of the oil and gas mixture. During an intake stroke, a fuel is partially injected into the cylinder or an intake manifold, to form a low-concentrated, homogeneous, premixed oil and gas mixture. Before the piston reaches a top dead center during the compression stroke, the remaining part of fuel is injected into the cylinder, diffuses in the air, and spontaneously ignites, thus achieving diffusion compression ignition. A flame is generated in the diffusion compression ignition, and ignites the premixed oil and gas mixture in the cylinder, to achieve ignition and combustion of the homogeneous lean fuel. As the temperature and the pressure rise in the cylinder, multi-point spontaneous ignition occurs within the homogeneous lean oil and gas mixture, thus achieving homogeneous charge compression ignition. Such a combined ignition control method achieves a high compression ratio, lean combustion, stratified combustion, and fast combustion, without causing any knocks. Also disclosed are an insulation method of an internal combustion engine exhaust system, and a product thereof.
Abstract:
A control method of an internal combustion engine and an internal combustion engine applying the same. Each cylinder is provided with a throttle valve, or a plurality of paralleled throttle valves are employed to supply air for different cylinders or cylinder groups, so that different cylinders are provided with different inlet pressure and inlet airflow, different spark ignition timing (phase angle), different injection timing (phase angle), and different injection quantity, and in a complete work cycle, some cylinders of the engine operate under a compression ignition combustion mode, and some cylinders of the engine operate under a spark ignition combustion mode. When the conditions for compression ignition combustion mode are satisfied, the cylinders adopt the compression ignition combustion mode as much as possible, so as to improve the thermal power efficiency of the engine. The internal combustion engine or vehicle installed with the control method has wide adaptability to different fuel with different ignition points, can detect the octane number of gasoline, and consume various octane number gasoline.