Abstract:
A controller for using a first data item transmitted via a network to generate a second data item for controlling an entity to be controlled over the network, wherein the controller is characterized in being provided with: an adjustment unit for adjusting, with respect to the maximum delay time permissible on the network, the time by which generation of the second data item is started using the first data item after the first data item has been received; and a delay compensation unit, designed using a model of the entity to be controlled and the maximum delay time permissible on the network, for compensating for the delay of the first and second data items that can be generated using the network.
Abstract:
A wireless device that performs an operation based on setting information includes a wireless communicator configured to perform wireless communication over a wireless network, a near field communicator comprising a memory storing the setting information and configured to perform transmission and reception of the setting information stored in the memory by near field communication, and a controller configured to control at least the wireless communicator.
Abstract:
A field device according to one aspect of the present invention may include a first processor configured to perform a process of communicating first information used for process control and a process of generating second information including a diagnosis result obtained by performing self-diagnosis of the field device, a second processor including a first wireless unit configured to perform wireless communication, the second processor being configured to request the first processor to read at least the second information and to perform a process of transmitting, from the first wireless unit, the second information obtained through the read request as a wireless signal, and a security unit configured to permit or reject a request made to the first processor by the second processor in accordance with a rule which is specified in advance.
Abstract:
An interface module according to one aspect of the invention includes an interface and a local communication device. The interface, which is connected to a field device, receives a first wireless signal from the field device. The local communication device wirelessly transmits the first signal to a wireless module by first local communications. The local communication device receives, from the wireless module by second local communications, a second signal destined for the field device that is wirelessly transmitted from an external device and wirelessly received by the wireless device. The interface device outputs the second signal to the field device.
Abstract:
A wireless device may include a sensor unit and a wireless unit. The sensor unit may include: an input/output unit that measures or manipulating a state quantity in a process; a first local communication unit that performs local communication to transmit/receive measurement results or manipulation commands for the input/output unit; and a first supply unit that supplies power to the input/output unit and the first local communication unit. The wireless unit may include: a wireless communication unit that transmits/receives the measurement results or the manipulation commands for the input/output unit; a second local communication unit that performs local communication with the first local communication unit to transmit/receive the measurement results or the manipulation commands for the input/output unit; and a second supply unit that supplies power to the wireless communication unit and the second local communication unit.
Abstract:
A wireless relay device for relaying packets via a wireless network includes an aggregator and a transfer controller. The aggregator is configured to aggregate a plurality of sets of data respectively included in a plurality of first packets transmitted from a plurality of wireless devices in the wireless network and under the wireless relay device to generate a second packet. The plurality of first packets is addressed to the wireless relay device. The transfer controller is configured to transfer the second packet to a transfer destination.
Abstract:
A wireless relay device for relaying encrypted data via a wireless network according to one aspect of the present invention includes a relay controller and an encryption processor. The relay controller is configured to relay a first data to a predetermined relay destination as a second data via the wireless network. The first data is transmitted to the wireless relay device via the wireless network and is addressed to the wireless relay device. The encryption processor is configured to decrypt the first data into a decrypted first data and to input the decrypted first data into the relay controller, and encrypt the second data to be relayed by the relay controller.
Abstract:
A wireless relay device that performs relay of data over a wireless network includes: a manager that manages a second wireless network different from a first wireless network that the own device joins; and a transfer controller that transfers data transmitted to the own device over the second wireless network, to a preset transfer destination over the first wireless network.
Abstract:
A wireless relay device that performs relay of encrypted data over a wireless network, the wireless relay device, includes: a determiner that determines whether or not there is an abnormality using first data which is transmitted to its own device from wireless devices belonging to a preset section among wireless devices joining the wireless network; a transmission controller that transmits second data indicating a result of the determination of the determiner to a preset transmission destination; and an encryption processor that decrypts the first data and encrypts the second data transmitted by the transmission controller.
Abstract:
A measurement system according to one aspect of the present invention includes a plurality of measurement devices configured to perform measurements at a plurality of sites in a measurement target, respectively, and a measurement management apparatus configured to acquire measured data measured by each of the measurement devices via a communication network. Times timed by the measurement devices are correlated with each other. Each of the measurement devices is configured to transmit the measured data measured based on the correlated time to measurement management apparatus. The measurement management apparatus includes a measured data acquirer configured to acquire the measured data from each of the measurement devices.