Abstract:
A system or a method includes defining missions based on factors associated with the missions or environmental data associated with the system, assigning the missions to the fleet of robots based on capabilities of the robots, generating a schedule of the missions and the robots, and managing the fleet of robots using feedback.
Abstract:
A wireless device that performs an operation based on setting information includes a wireless communicator configured to perform wireless communication over a wireless network, a near field communicator comprising a memory storing the setting information and configured to perform transmission and reception of the setting information stored in the memory by near field communication, and a controller configured to control at least the wireless communicator.
Abstract:
A device adapter which is connectable to the field devices, includes an interface which is connectable to the field devices, a power source configured to supply electric power to the field devices connected to the interface, and a start controller configured to perform a start control of the field devices connected to the interface to make a total power consumption of the field devices connected to the interface be within a range permitted in accordance with an explosion-proof standard.
Abstract:
A communication apparatus of an embodiment of the present invention includes a storage temporarily storing data received via a wireless network from another communication apparatus that sends the data regarding feedback control at a fixed time interval and an arranger configured to read out and output at the fixed time interval the data stored in the storage and to arrange the data with the fixed time interval.
Abstract:
A system or a method includes defining missions based on factors associated with the missions or environmental data associated with the system, assigning the missions to the fleet of robots based on capabilities of the robots, generating a schedule of the missions and the robots, and managing the fleet of robots using feedback.
Abstract:
A wireless relay device that performs relay of data over a wireless network includes: a manager that manages a second wireless network different from a first wireless network that the own device joins; and a transfer controller that transfers data transmitted to the own device over the second wireless network, to a preset transfer destination over the first wireless network.
Abstract:
A wireless relay device that performs relay of encrypted data over a wireless network, the wireless relay device, includes: a determiner that determines whether or not there is an abnormality using first data which is transmitted to its own device from wireless devices belonging to a preset section among wireless devices joining the wireless network; a transmission controller that transmits second data indicating a result of the determination of the determiner to a preset transmission destination; and an encryption processor that decrypts the first data and encrypts the second data transmitted by the transmission controller.
Abstract:
A measurement system according to one aspect of the present invention includes a plurality of measurement devices configured to perform measurements at a plurality of sites in a measurement target, respectively, and a measurement management apparatus configured to acquire measured data measured by each of the measurement devices via a communication network. Times timed by the measurement devices are correlated with each other. Each of the measurement devices is configured to transmit the measured data measured based on the correlated time to measurement management apparatus. The measurement management apparatus includes a measured data acquirer configured to acquire the measured data from each of the measurement devices.
Abstract:
A system or a method includes defining missions based on factors associated with the missions or environmental data associated with the system, assigning the missions to the fleet of robots based on capabilities of the robots, generating a schedule of the missions and the robots, and managing the fleet of robots using feedback.
Abstract:
A system or a method includes defining missions based on factors associated with the missions or environmental data associated with the system, assigning the missions to the fleet of robots based on capabilities of the robots, generating a schedule of the missions and the robots, and managing the fleet of robots using feedback.