Abstract:
Compactness and easier assembly, as well as desired spectral characteristics, are achieved without requiring an accurate assembly process, by accurately detecting the spacing between optical substrates. A variable spectroscopy element (1) is provided, which includes two optical substrates (4a and 4b) that face each other with a spacing therebetween; optical coatings (3) provided on opposing surfaces of the optical substrates (4a and 4b); an actuator (4c) that adjusts the spacing between the two optical substrates (4a and 4b); and a capacitance sensor (6) that has sensor electrodes (6a and 6b) respectively provided on the two optical substrates (4a and 4b) and detects the spacing between the optical substrates (4a and 4b). The sensor electrode (6b) provided on one optical substrate (4b) is included within a region of the optical substrate (4b) onto which the sensor electrode (6a) provided on the other optical substrate (4a) is projected.
Abstract:
Spectral characteristics are controlled with high accuracy using a variable-spectrum device provided at the tip of a long insertion portion of an endoscope, thereby acquiring a sharp observation image. An endoscope system, at least a portion of which is to be inserted into the body cavity of a living organism and which acquires an image of an observation target in the body cavity, includes, at a leading end of the portion inserted into the body cavity, a variable-spectrum device whose spectral characteristics are changed by changing a gap between two facing optical elements that are separated by the gap; an actuator that changes the gap between the two optical elements in accordance with an input driving signal; a sensor that detects the gap between the two optical elements; and an electrical circuit to which the output of the sensor is input, which includes an active device, and which outputs an electrical signal corresponding to the output of the sensor.
Abstract:
Spectral characteristics are controlled with high accuracy using a variable-spectrum device provided at the tip of a long insertion portion of an endoscope, thereby acquiring a sharp observation image. An endoscope system, at least a portion of which is to be inserted into the body cavity of a living organism and which acquires an image of an observation target in the body cavity, includes, at a leading end of the portion inserted into the body cavity, a variable-spectrum device whose spectral characteristics are changed by changing a gap between two facing optical elements that are separated by the gap; an actuator that changes the gap between the two optical elements in accordance with an input driving signal; a sensor that detects the gap between the two optical elements; and an electrical circuit to which the output of the sensor is input, which includes an active device, and which outputs an electrical signal corresponding to the output of the sensor.
Abstract:
It is possible to a variable spectroscopy device that has a plurality of coating layers facing each other at an interval and changes a transmission band of light passing through the coating layers by adjusting an optical path length between the coating layers, in which the coating layer is structured so that a change rate of a transmission bandwidth between two arbitrary transmission bands is smaller than a change rate of a central wavelength between the two transmission bands within a spectroscopy wavelength band for changing a transmission band.
Abstract:
An optical apparatus for capturing spectral images includes a variable spectroscopy device having first and second optical members that face each other and have a space therebetween, the spectral characteristics of the variable spectroscopy device being changed in accordance with changes in the relative positions of these optical members; a frame member that fixes the first optical member in place; a driving section disposed between the frame member and the second optical member, and transferring the second optical member with respect to the frame member in accordance with driving signals input to the driving section; and an optical element that deflects or disperses light beams passing through the variable spectroscopy device or a photoelectric conversion element that conducts photoelectric conversion. The optical element or the photoelectric conversion element is supported by the frame member.
Abstract:
It is possible to a variable spectroscopy device that has a plurality of coating layers facing each other at an interval and changes a transmission band of light passing through the coating layers by adjusting an optical path length between the coating layers, in which the coating layer is structured so that a change rate of a transmission bandwidth between two arbitrary transmission bands is smaller than a change rate of a central wavelength between the two transmission bands within a spectroscopy wavelength band for changing a transmission band.
Abstract:
A confocal microscope is provided which uses a confocal disk. The confocal microscope includes a light source, a high-NA and low-magnification objective lens which forms an image of the confocal disk obtained by irradiation with a light from the light source on a sample, and a first image formation lens system disposed between the confocal disk and the objective lens. A first image formation lens driving mechanism is provided for moving the first image formation lens system in a light axis direction and adjusting a focal point position of the objective lens with respect to the sample, and a second image formation lens system is provided which forms a sectioning image formed on the confocal disk into an image by photoelectric conversion.
Abstract:
An illuminating optical system for use in a projection exposure device with high utilization efficiency of the light from the light source and capable of easily realizing with simple construction is disclosed. The system comprises a light source, a light flux separating optical system for separating a light flux from the light source, a condenser optical system for leading the light flux separated by the light flux separating optical system on a reticle, and a diffraction optical unit included in the light flux separating optical system and having a linear grating pattern for separating the light flux from the light source into four.
Abstract:
A method of manufacturing a die for optical elements having a given construction on a relief type grating or the like is disclosed. The method includes the steps of: forming a workpiece film on a substrate; machining the workpiece film in a required configuration; subjecting the workpiece film machined in the required form and the substrate to etching to transfer the configuration of the workpiece film on the substrate analogously in the depth direction; and forming a die by using the etched substrate as a master matrix.
Abstract:
An optical apparatus for capturing spectral images includes a variable spectroscopy device having first and second optical members that face each other and have a space therebetween, the spectral characteristics of the variable spectroscopy device being changed in accordance with changes in the relative positions of these optical members; a frame member that fixes the first optical member in place; a driving section disposed between the frame member and the second optical member, and transferring the second optical member with respect to the frame member in accordance with driving signals input to the driving section; and an optical element that deflects or disperses light beams passing through the variable spectroscopy device or a photoelectric conversion element that conducts photoelectric conversion. The optical element or the photoelectric conversion element is supported by the frame member.