Abstract:
The invention provides a process for the production of hydrogen, comprising catalytically decomposing a concentrated aqueous solution of potassium formate in a reaction vessel to form bicarbonate slurry and hydrogen, discharging the hydrogen from said reaction vessel, and treating a mixture comprising the bicarbonate slurry and the catalyst with an oxidizer, thereby regenerating the catalyst. Pd/C catalysts useful in the process are also described.
Abstract:
There is provided a process for renewing the activity of supported metal catalysts for the hydrogenation of carbon monoxide to form a mixture of hydrocarbons comprising decreasing the hydrocarbon content of the catalyst, preferably by contact with hydrogen-containing gas at elevated temperatures, impregnating under a non-oxidizing atmosphere with a solution of at least one of an ammonium salt and an alkyl ammonium salt, optionally in combination with up to five moles of ammonia per liter of solution to the point where it has absorbed a volume of solution equal to at least about 10% of its calculated pore volume; oxidizing the catalyst with a gaseous oxidant in the presence of the impregnating solution and activating the catalyst by reduction with hydrogen at elevated temperatures. Optionally, the catalyst is calcined after the oxidation step, and passivated after the activation step.
Abstract:
There is provided a process for hydrocarbon synthesis wherein a supported metal catalyst for hydrogenating carbon monoxide to form a mixture of hydrocarbons is regenerated by decreasing its hydrocarbon content, impregnating under a non-oxidative atmosphere with a solution of at least one member selected from the group consisting of ammonium salts, alkyl ammonium salts and weak organic acids, optionally including ammonia, oxidizing with a gaseous oxidant in the presence of the impregnating solution, activating the catalyst by reduction with hydrogen at elevated temperatures and reusing the catalyst. The treatment may be carried out in a single reactor, or by carrying out up to all steps after catalyst has been withdrawn therefrom and returned to at least one reactor. Up to all steps subsequent to decreasing the hydrocarbon content may be effected in a subsequent reactor, or in specialized apparatus.
Abstract:
The present invention is concerned a process for the regeneration of the spent silica gel used in chromatography and for any other kind of silica. The process comprises 5 main steps, namely: washing with an extractant of organic compounds and removing volatile organic materials remaining thereafter; oxidation to oxidize organic compounds remaining and, preferably, bleach the material; washing with an acid to remove soluble inorganic matter; heating to dry the material and combust any remaining organic compounds present; and recovering the regenerated material. Various optional steps can be added to the process.
Abstract:
A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.
Abstract:
A process for regenerating catalysts that have been deactivated or poisoned during hydrogenation of biomass, sugars and polysaccharides is described, in which polymerized species that have agglomerated to catalyst surfaces can be removed by means of washing the catalyst with hot water at subcritical temperatures. A feature of the process can regenerate the catalysts in situ, which allows the process to be adapted for used in continuous throughput reactor systems. Also described is a continuous hydrogenation process that incorporated the present regeneration process.
Abstract:
There is provided a method for producing cycloolefin where the nickel which elutes in the liquid-contact portion of the reactor is removed from the reaction system of the partial hydrogenation reaction and cycloolefin can be stably produced from a monocyclic aromatic hydrocarbon over a long term. A method for producing a cycloolefin by a partial hydrogenation reaction of a monocyclic aromatic hydrocarbon in an aqueous phase, which contains a metal salt-containing acidic aqueous solution and a ruthenium catalyst in a reactor with a liquid-contact portion formed of a nickel-containing material, the method comprising a first step of bringing at least a part of the ruthenium catalyst contained in the aqueous phase into contact with oxygen, a second step of separating the aqueous phase containing the ruthenium catalyst that has been processed in the first step into a first phase containing the ruthenium catalyst at a high ratio and a second phase containing the ruthenium catalyst at a lower ratio than the first phase, and a third step of feeding the first phase to a reaction system of a partial hydrogenation reaction.
Abstract:
Methods of removing or softening calcium material from a substrate (e.g., a catalytic converter) and regenerating a catalytic converter are provided. A substrate (e.g., a catalyst support material) having a calcium containing material (e.g., calcium-containing fly ash) embedded or deposited thereon can be treated with a composition including one or more organosulfur oxoacids or salts thereof.
Abstract:
This invention is directed to a method and apparatus for regenerating a catalyst used in an FCC unit, including providing a spent catalyst into an upper portion of a regenerator, maintaining a calcination phase, a gasification phase, and a combustion phase of fluidized catalyst in the regenerator, combusting carbon in the combustion phase and producing a combustion flue gas, reacting carbon in the gasification phase with the combustion flue gas to form a carbon monoxide rich flue gas, and calcining the spent catalyst with the carbon monoxide rich flue gas.
Abstract:
There is provided a process for hydrocarbon synthesis wherein a supported metal catalyst for hydrogenating carbon monoxide to form a mixture of hydrocarbons is regenerated by decreasing its hydrocarbon content, impregnating under a non-oxidative atmosphere with a solution of at least one member selected from the group consisting of ammonium salts, alkyl ammonium salts and weak organic acids, optionally including ammonia, oxidizing with a gaseous oxidant in the presence of the impregnating solution, activating the catalyst by reduction with hydrogen at elevated temperatures and reusing the catalyst. The treatment may be carried out in a single reactor, or by carrying out up to all steps after catalyst has been withdrawn therefrom and returned to at least one reactor. Up to all steps subsequent to decreasing the hydrocarbon content may be effected in a subsequent reactor, or in specialized apparatus.