Abstract:
An electrostatic sprayer operable at high flow rates and low pressures particularly suitable for spray drying. The sprayer includes an elongated body having a downstream spray nozzle assembly through which electrically charged liquid is directed via a central feed tube within the nozzle body and atomizing air is supplied via an annular passage about the liquid feed tube. In one embodiment, the nozzle assembly is an external mix cluster head spray nozzle assembly having a plurality of circumferentially spaced metallic spray tips. In another embodiment, the spray nozzle is an internal mix nozzle assembly having a spray tip with an internal mixing chamber for atomizing liquid prior to discharge.
Abstract:
A switch mode power supply circuit with high voltage output, an electrostatic spray apparatus and agricultural plant protection apparatus using the same are provided. The switch mode power supply circuit is electrically connected in series with at least a pre-stage power converter and a post-stage power converter. In order to simplify the control, the switch of the pre-stage power converter is omitted, only one switch of the post-stage power converter is adopted to perform synchronous control. Since the multiple sets of power conversion circuits in the previous stage are connected in series, the turn ratio of the transformer in the power converter in the subsequent stage can be reduced. Therefore, the transformer can be miniaturized and the power supply circuit would be more suitable for agricultural plant protection machine and electrostatic spray apparatus.
Abstract:
An electrostatic fluid delivery system is configured to deliver fluid, such as a disinfectant fluid, onto a surface by electrically charging the fluid and forming the fluid into a mist, fog, plume, or spray that can be directed onto a surface, such as a surface to be cleaned. The system atomizes the fluid using a high-pressure fluid stream and passes the fluid through an electrode of a nozzle assembly to charge droplets of the atomized fluid.
Abstract:
Provided is an electrostatic spraying device capable of spraying liquid, such as paint, onto a sprayed object in a stable manner. The electrostatic spraying device of the invention releases liquid in an electrically-charged state from a nozzle using an electrostatic force generated by voltage application and thus sprays the liquid onto a sprayed object. The electrostatic spraying device comprises a nozzle head provided with the nozzle comprising a plurality of nozzles made of conductive or semiconductive material and a voltage application device configured to apply voltage between the nozzles and a heteropolar portion (sprayed object) that is heteropolar to the nozzles and thus generate the electrostatic force. The nozzles are so arranged that distance between axes L of at least adjacent nozzles increases with increasing distance from the nozzle head.
Abstract:
Exemplary coating methods and coating systems, e.g., for coating the component surface of a component with a coating agent by means of an atomizer in a coating system, for example to paint a body part of a motor vehicle with paint, are disclosed. An exemplary method comprises moving the atomizer over the component surface of the component to be coated, or moving the component in the spray jet, thereby applying the coating agent to the component surface by means of the atomizer. The atomizer may be operated with at least one electrical and/or kinematic operating variable comprising a certain voltage for the electrostatic charging of the coating agent and/or a certain rotational speed of a rotating spray element of the atomizer. In one example, the electrical and/or kinematic operating variable of the atomizer may be dynamically varied during the movement of the atomizer.
Abstract:
An electrostatic fluid delivery system is configured to deliver fluid, such as a disinfectant fluid, onto a surface by electrically charging the fluid and forming the fluid into a mist, fog, plume, or spray that can be directed onto a surface, such as a surface to be cleaned. The system atomizes the fluid using a high-pressure fluid stream and passes the fluid through an electrode of a nozzle assembly to charge droplets of the atomized fluid.
Abstract:
A high voltage controller configured to drive a high voltage generator. The high voltage controller includes a voltage select input and a current select input, an actual voltage input and an actual current input. First circuitry is configured to generate an alternating current (AC) drive signal. Second circuitry configured to generate a direct current (DC) drive signal. Closed loop control circuitry is configured to adjust the DC drive signal based on at least one of the voltage select and current select inputs and at least one of the actual voltage and actual current inputs. The first circuitry may include a push-pull circuit. The second circuitry may include a pulse width modulation (PWM) controller. A high voltage generator may be coupled to the AC and DC drive signals. The high voltage generator may include a high voltage transformer having a pair of primary windings and center tap. The AC drive signal may be coupled to the primary windings and the DC drive signal may be coupled to the center tap.
Abstract:
An electrostatic coating plant coats components with a coating agent that is electrically charged by high voltage device. A first operating variable of a high voltage device may be determined and compared to a limit value. A safety measure may be initiated if the comparison between the first operating variable and the limit value indicates a disturbance in the electrostatic coating plant. The limit value may be flexibly adjusted depending on the operation mode.
Abstract:
This spraying member (10) comprises at least one outer bowl (100) and one inner bowl (200), each bowl defining a spraying edge (101, 201), one inner spreading surface (102, 202) and one outer surface (103, 203). The inner bowl (200) is positioned radially on the inside of the outer bowl (100), whereas a volume (V1) defined between the inner surface (102) of the outer bowl (100) and the outer surface (203) of the inner bowl (200) has a thickness (e), corresponding to the distance between this inner surface (102) and this outer surface (203), decreasing between a first value (e1), taken at the zone for inlet of cleaning product into the volume (V1), and a second value (e2), taken at the spraying edge (101) of the outer bowl (100). The spraying member (10) comprises means (68) for the central supply of the inner spreading surfaces (102, 202).
Abstract:
An apparatus and method for electrostatic spray deposition of small targets, such as medical devices like stents. The apparatus includes a target holder which applies a first electrical potential to the target, and an electrostatic dispensing nozzle which applies a second potential sufficient to attract the coating fluid from the nozzle toward the target. Because the entire dispensing nozzle is conductive, the coating fluid may receive a greater charge than may be obtained with internal electrode-type nozzles. Electrostatic attraction of the coating fluid to the target is enhanced by the combination of higher charge density imparted to the coating fluid by the conductive nozzle, and application of a momentary voltage spike to the target to provide consistent conductivity between the target and its holder, thereby ensuring the target is presents the full first potential applied to the holder. The voltage spike may also be used independently of the conductive nozzle.