Abstract:
Provided are a maleimide resin composition containing (A) one or more selected from the group consisting of a maleimide compound having two or more N-substituted maleimide groups and a derivative thereof, (B) a modified conjugated diene polymer, and (C) a thermoplastic elastomer other than the above component (B), wherein the component (B) is one resulting from modification of (b1) a conjugated diene polymer having a vinyl group in the side chain with (b2) a maleimide compound having two or more N-substituted maleimide groups; and a prepreg, a resin film, a laminated board, a printed wiring board and a semiconductor package, each using the maleimide resin composition.
Abstract:
A method for producing a portable data carrier includes a spatial structure printed on a first foil. Electroconductive lines are applied first, and components are subsequently inserted in the structure, wherein the structure corresponds to the dimensions or the shape and size of the inserted components. The components are electroconductively connected to the lines therein. A cover is printed over the components. A second foil can be applied to the cover, wherein a design print can be applied to both foils. A gap can be incorporated in the structure and the foils, in order to insert a chip module.
Abstract:
An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
Abstract:
A circuit board assembly includes a low-frequency (LF) substrate, a monolithic microwave integrated circuit (MMIC), electrical components, a high-frequency (HF) substrate, and an antenna. The LF substrate is formed of FR-4 type material. The LF substrate defines a waveguide through the LF substrate. The MMIC is attached to the top-side of the LF substrate and outputs the radio-frequency signal. The electrical components are electrically attached to the LF substrate. The HF substrate is soldered to the top side of the LF substrate. An opening through the HF substrate surrounds the MMIC. A vertical transition guides the radio-frequency signal output by the MMIC to the waveguide. A plurality of wire bonds electrically connects the MMIC to the HF substrate and couple the radio-frequency signal from the MMIC to the vertical transition. The antenna is attached to the LF substrate and configured to radiate the radio-frequency signal from the waveguide.
Abstract:
In a method for mounting a filter circuit component to obtain desired frequency characteristics of the filter circuit component without receiving the influence of a parasitic inductance and a parasitic capacitance, and to increase the packing density of components, since the ground terminal of the filter circuit component connected to the mounting electrode is connected to the ground electrode through the via conductors at the shortest distance, the occurrence of an unnecessary parasitic inductance and an unnecessary parasitic capacitance is prevented. The filter circuit component is mounted on the high-frequency component to obtain the desired frequency characteristics of the filter circuit component without the influence of a parasitic inductance and a parasitic capacitance. Since the component is located in a space surrounded by the inner peripheral surface of the supporting frame body, the packing density of components is increased.
Abstract:
An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
Abstract:
A circuit including a flexible substrate and at least one electric element attached to the substrate, the substrate including at least one cavity arranged near the electric element and helping to break or distort the electric element in response to a flexion or stretching of the substrate. Application in particular is to the manufacture of tear-proof electronic micromodules.
Abstract:
An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
Abstract:
An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
Abstract:
An electronic component module includes a plurality of components having terminals and arranged along a plane, a sealing resin portion that covers and seals these components and has a plane as one plane of an outer surface, and a shield layer that covers the outer surface of the sealing resin portion. Terminals of the plurality of components are exposed in a state of protruding from the plane of the sealing resin portion, and the terminals of these components protruding from the plane of the sealing resin portion are used as mounting terminals of the electronic component module.