Abstract:
Solid phase methods for the identification of an analyte in a biological medium, such as a body fluid, using bioluminescence are provided. A chip designed for performing the method and detecting the bioluminescence is also provided. Methods employing biomineralization for depositing silicon on a matrix support are also provided. A synthetic synapse is also provided.
Abstract:
A surface plasmon resonance measuring apparatus is provided with a dielectric block, a metal film formed on a surface of the dielectric block, a light source for emitting a light beam, an optical system for making the light beam enter the dielectric block at various angles of incidence so that a condition for total internal reflection is satisfied at an interface between the dielectric block and the thin film layer, and a photodetector for detecting the intensity of the light beam satisfying total internal reflection at the interface. In the measurement chip to be utilized in the surface plasmon resonance measuring apparatus, the dielectric block is formed from a synthetic resin in which, when said light beam is p-polarized outside said dielectric block and then strikes the interface, the intensity of a s-polarized component at the interface is 50% or less of the intensity of the light beam at the interface.
Abstract:
The present invention provides a hyperspectral imaging apparatus and methods for employing such an apparatus for multi-dye/base detection of a nucleic acid molecule coupled to a solid surface.
Abstract:
An arrangement and method for determining the two-dimensional distribution of fundus pigments, particularly of the xanthophyll macular pigment. The arrangement for carrying out the method comprises an illumination unit which illuminates the retina via an illumination beam path directed to the ocular fundus, observation optics located in the observation beam path proceeding from the ocular fundus, an image processing unit, elements for beam deflection and a central controlling and evaluating unit. In the method, a two-dimensional reflection image of the retina is recorded in a selected narrow-band wavelength region. In evaluating this two-dimensional reflection image, site-specific areas are established for determining the optical density and comparison values. The optical density of the fundus pigment at every fundus location is calculated from the negative logarithmic value of the quotient of the intensity value of the reflection image IR(null) at this fundus site to a comparison intensity value of the reflection image IR(null)Comparison. The suggested solution for the objective detection of the two-dimensional distribution of the optical density of the macular pigment xanthophyll is also suitable in principle for determining the distribution of other fundus pigments.
Abstract:
Methods and devices for detecting the incorporation of NTPs into immobilized enzyme-nucleic acid complexes are disclosed. The methods and devices can be used to genotype or sequence nucleic acids, including DNA and RNA, and are capable, in preferred embodiments, of detecting single incorporation events.
Abstract:
The invention relates to embodiments of an optical system for luminescence determination, comprising two or more excitation light sources, a sensor platform and an optical component with several discrete facets for beam deflection towards the sensor platform. Further subjects of the invention are methods for luminescence determination with an optical system according to the invention and analytical systems, as well as the use of these methods for quantitative affinity sensing and for various other applications. The aim of the present invention is to provide optical and analytical measuring devices for highly sensitive detection of one or more analytes, using a multitude of measurement areas on a common carrier.
Abstract:
A wide-dynamic range, high-resistivity and high-speed method of stably obtaining fluorescent images of two or more samples which may includes a fluorescent material, comprising the steps of: disposing each of said samples onto each of two or more compartments which an area on a substrate is split into; sequentially irradiating said compartments with an exciting light wherein each of said compartments is irradiated with said exciting light with the intensity changed; detecting one or more fluorescent lights as generated from each of said samples corresponding to said changed intensity of said exciting light every each of said samples; determining the true value of fluorescence as generated from each of said samples by using information on said one or more fluorescent lights as detected every each of said samples; and obtaining a fluorescent image of each of said samples by using said true value of fluorescence from each of said samples, and an apparatus for carrying out the same are provided.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An instrument system for detecting a biochemical interaction on a biosensor. The system includes an array of detection locations comprises a light source for generating collimated white light. A beam splitter directs the collimated white light towards a surface of a sensor corresponding to the detector locations. A detection system includes an imaging spectrometer receiving the reflected light and generating an image of the reflected light.
Abstract:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations, or modules, in which discrete aspects of the assay are performed on fluid samples contained in reaction receptacles. The analyzer includes stations for automatically preparing a specimen sample, incubating the sample at prescribed temperatures for prescribed periods, preforming an analyte isolation procedure, and ascertaining the presence of a target analyte. An automated receptacle transporting system moves the reaction receptacles from one station to the next. The analyzer further includes devices for carrying a plurality of specimen tubes and disposable pipette tips in a machine-accessible manner, a device for agitating containers of target capture reagents comprising suspensions of solid support material and for presenting the containers for machine access thereto, and a device for holding containers of reagents in a temperature controlled environment and presenting the containers for machine access thereto. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte. The process is performed by automatically moving each of a plurality of reaction receptacles containing a solid support material and a fluid sample between stations for incubating the contents of the reaction receptacle and for separating the target analyte bound to the solid support from the fluid sample. An amplification reagent is added to the separated analyte after the analyte separation step and before a final incubation step.
Abstract:
A system and method for in vitro analysis of therapeutic agents comprising a reservoir adapted to hold a therapeutic agent, a first flow cell having a first cell chamber adapted to receive at least a first sample of the therapeutic agent, a second flow cell having a second cell chamber adapted to receive at least a second sample of the therapeutic agent, the first flow cell having a first path length (benull) and the second flow cell having a second path length (benull), the first path length being substantially equal to a sensitivity factor (f)nullbenull, a membrane chamber having a biological cell membrane therein adapted to receive at least a third sample of the therapeutic agent, the membrane chamber being further adapted to detect the membrane potential of the biological cell membrane; and spectroscopic detection means for detecting the spectral characteristics of the first and second therapeutic agent samples.