Abstract:
A mobile robot (100) that includes a drive system (200), a controller (500) in communication with the dive system, and an electronic display (310, 312) supported above the drive system and in communication with the controller. The controller includes a central processing unit (502), a general purpose graphics processing unit (504), and memory (506) in electrical communication with the central processing unit and the general purpose graphics processing unit. Moreover, the controller has a display operating state and a driving operating state. The controller executes graphics computations on the general purpose graphics processing unit for displaying graphics on the electronic display during the display operating state; and the controller executes mobility computations on the general purpose graphics processing unit for issuing commands to the drive system during the driving operating state.
Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
Abstract:
An operator control unit having a user interface that allows a user to control a remote vehicle, the operator control unit comprising: a transmission unit configured to transmit data to the remote vehicle; a receiver unit configured to receive data from the remote vehicle, the data received from the remote vehicle comprising image data captured by the remote vehicle; and a display unit configured to display a user interface comprising the image data received from the remote vehicle and icons representing a plurality of controllable elements of the remote vehicle, and configured to allow the user to input a control command to control at least one of the plurality of controllable elements. Inputting a control command to control the at least one controllable element comprises selecting the icon representing the at least one controllable element, inputting an action for the at least one controllable element, and requesting that the at least one controllable element performs the action.
Abstract:
A cleaning robot system (5) includes a robot (10) and a robot maintenance station (100,1100,1200,1300,1400). The robot (10) includes a chassis (31), a drive system (45) configured to maneuver the robot (10) as directed by a controller (49), and a cleaning assembly (43) including a cleaning assembly housing (40) and a driven cleaning roller (60,65). The robot maintenance station (100,1100,1200,1300,1400) includes a station housing (120) and a docking platform (122) configured to support the robot (10) when docked. A mechanical agitator (510,520) engages the roller (60,65) of the robot (10) with the robot (10) docked. The agitator (510,520) includes an agitator comb (511) having multiple teeth (512) configured to remove accumulated debris from the roller (60,65) as the agitator comb (511) and roller (60,65) are moved relative to one another. The robot maintenance station (100,1100,1200,1300,1400) includes a collection bin (150) arranged to receive and hold debris removed by the mechanical agitator (510,520).
Abstract:
Systems and methods for autonomous control of a vehicle include interruptible, behavior-based, and selective control. Autonomous control is achieved by using actuators that interact with input devices in the vehicle. The actuators (e.g., linkages) manipulate the input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, or accelerator) to direct the operation of the vehicle. Although operating autonomously, manual operation of the vehicle is possible following the detection of events that suggest manual control is desired. Subsequent autonomous control may be permitted, permitted after a prescribed delay, or prevented. Systems and methods for processing safety signals and/or tracking terrain features are also utilized by an autonomous vehicle.
Abstract:
An autonomous mobile robot comprise: a chassis having a drive system mounted therein in communication with a control system; a cleaning head assembly having a lower cage and mounted to the chassis; a debris collection bin mounted to the chassis; a vacuum airway having a vacuum inlet and an airway outlet positioned adjacent the debris collection bin, and configured to deliver debris from the cleaning head assembly to a debris collection bin, the vacuum airway extending between the cleaning assembly and debris collection bin and being in fluid communication with an impeller disposed within the debris collection bin; and a cleaning head module connected to the chassis and having a front roller including a front shape-changing resilient tube and an adjacent rear roller including a rear shape-changing resilient tube rotatably opposing therewith beneath the vacuum inlet. The surface of the front shape-changing tube and the surface rear shape-changing tube are separated by a narrowest air gap of less than 1 cm, such that the vacuum draw directed from the vacuum airway is concentrated within the narrowest air gap.
Abstract:
A mobile robot (100) that includes a drive system (200), a controller (500) in communication with the drive system, and a volumetric point cloud imaging device (450) supported above the drive system at a height of greater than about one feet above the ground and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane in a direction of movement of the mobile robot. The controller receives point cloud signals from the imaging device and issues drive commands to the drive system based at least in part on the received point cloud signals.
Abstract:
A mobile robot (100) including a drive system (200) having a forward drive direction (F), a controller (500) in communication with the drive system, and a volumetric point cloud imaging device (450) supported above the drive system and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane (5) in a direction of movement of the mobile robot. A dead zone sensor (490) has a detection field (492) arranged to detect an object in a volume of space (453) undetectable by the volumetric point cloud imaging device. The controller receives point cloud signals from the imaging device and detection signals from the dead zone sensor and issues drive commands to the drive system based at least in part on the received point cloud and detection signals.
Abstract:
A method of operating a mobile robot (100) to traverse a threshold (T) includes detecting a threshold proximate the robot. The robot includes a holonomic drive system (200) having first, second, and third drive elements (210a-c) configured to maneuver the robot omni-directionally. The method further includes moving the first drive element (210a) onto the threshold from a first side and moving the second drive element (210b) onto the threshold to place both the first and second drive elements on the threshold. The method includes moving the first drive element off a second side of the threshold, opposite to the first side of the threshold, and moving the third drive element (210c) onto the threshold, placing both the second and third drive elements on the threshold. The method includes moving both the second and third drive elements off the second side of the threshold.
Abstract:
The present teachings relate generally to a small unmanned ground vehicle. The present teachings relate more particularly to a small unmanned ground vehicle weighing less than about five pounds, and which is designed to absorb an impact from being dropped or thrown and climb stairs of a conventional size, to perform a variety of behaviors such as stair climbing, self righting, and gap crossing, and to be sealed to prohibit ingress of liquids and debris.