Abstract:
The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.
Abstract:
The present invention pertains to improved microorganisms and methods for the production of methionine and other sulfur containing fine chemicals using the metl gene from Bacillus subtilis or a gene related to metI. In some embodiments of the present invention, the metI gene or another gene is integrated in a fashion that allows for co-production of a water soluble compound such as methionine or other amino acid and a caortenoid compound.
Abstract:
The present invention relates to microorganisms and processes for the efficient preparation of L-methionine. In particular, the present invention relates to processes in which the amount of serine available for the metabolism of the microorganism is increased.
Abstract:
The present invention features improved processes and organisms for the production of methionine. The invention demonstrates that a ?metF organism or a ?metE AmetH organism, for example, mutants of C. glutamicum or E. coli, can use a methyl capped sulfide source, e.g., dimethyl disulfide (DMDS), as a source of both sulfur and a methyl group, bypassing the need for MetH/Met? and MetF activity and the need to reduce sulfate, for the synthesis of methionine. Also described in this patent are data implicating MetY (also called MetZ) as an enzyme that incorporates a methyl capped sulfide source, e.g., DMDS, into methionine. A ?metF ?metB strain of C. glutamicum can use a methyl capped sulfide source, e.g., DMDS, as a source of both sulfide and a methyl group. Furthermore, methionine production by engineered prototrophic organisms that overproduce O-acetyl-homoserine was improved by the addition of a methyl capped sulfide source, e.g., DMDS.
Abstract:
The present invention concerns methods for the production of microorganisms with increased efficiency for methionine synthesis. The present invention also concerns microorganisms with increased efficiency for methionine synthesis. Furthermore, the present invention concerns methods for determining the optimal metabolic flux for organisms with respect to methionine synthesis.
Abstract:
An expression unit (A) that contains several promoters is new. A new expression unit (A) comprises several promoters and includes, in the 5' to 3' direction the sequence module (I). 5'-P 1-(A x-P x) n-A y-P y-3' (I) n = integer 0-10; A x and A y = same or different chemical bonds or nucleic acid linker sequences; P 1, P x and P y = same or different promoter sequences, containing at least one RNA-polymerase binding region, and at least P y also includes a ribosome-binding, 3'-terminal segment. Independent claims are also included for: (1) an expression cassette (EC) that contains, in the 5' to 3' direction, the sequence module (II); (2) vector that contains at least one EC; (3) a genetically modified microorganism (GMO) transfected with the vector of (2) or containing EC; and (4) method for preparing biosynthetic products (X) by culturing GMO. 5'-P 1-(A x-P x) n-A y-P y-G-3' (II) G : at least one nucleic acid coding sequence functionally linked to the 5'-upstream regulatory sequence.
Abstract:
The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.
Abstract:
The present invention features improved processes and organisms for the production of methionine. The invention demonstrates that a &Dgr;metF organism or a &Dgr;metE AmetH organism, for example, mutants of C. glutamicum or E. coli, can use a methyl capped sulfide source, e.g., dimethyl disulfide (DMDS), as a source of both sulfur and a methyl group, bypassing the need for MetH/MetE and MetF activity and the need to reduce sulfate, for the synthesis of methionine. Also described in this patent are data implicating MetY (also called MetZ) as an enzyme that incorporates a methyl capped sulfide source, e.g., DMDS, into methionine. A &Dgr;metF &Dgr;metB strain of C. glutamicum can use a methyl capped sulfide source, e.g., DMDS, as a source of both sulfide and a methyl group. Furthermore, methionine production by engineered prototrophic organisms that overproduce O-acetyl-homoserine was improved by the addition of a methyl capped sulfide source, e.g., DMDS.
Abstract:
An expression unit (A) that contains several promoters is new. A new expression unit (A) comprises several promoters and includes, in the 5' to 3' direction the sequence module (I). 5'-P 1-(A x-P x) n-A y-P y-3' (I) n = integer 0-10; A x and A y = same or different chemical bonds or nucleic acid linker sequences; P 1, P x and P y = same or different promoter sequences, containing at least one RNA-polymerase binding region, and at least P y also includes a ribosome-binding, 3'-terminal segment. Independent claims are also included for: (1) an expression cassette (EC) that contains, in the 5' to 3' direction, the sequence module (II); (2) vector that contains at least one EC; (3) a genetically modified microorganism (GMO) transfected with the vector of (2) or containing EC; and (4) method for preparing biosynthetic products (X) by culturing GMO. 5'-P 1-(A x-P x) n-A y-P y-G-3' (II) G : at least one nucleic acid coding sequence functionally linked to the 5'-upstream regulatory sequence.