Abstract:
Disclosed is a method for applying corrosion-resistant layers, especially integrated pretreatment layers or layers for atmospheric corrosion protection, to metallic surfaces. In said method, copolymers are used which contain monomers comprising 20 to 70 percent by weight of nitrogen heterocyles, monomers comprising 10 to 50 percent of acidic groups, 10 to 50 percent by weight of vinyl aromatic monomers, and 0 to 25 percent by weight of other optional monomers as monomeric constitutional units. Also disclosed are copolymers having said composition as well as preparations for applying corrosion-resistant layers.
Abstract:
The present invention provides a process for preparing emulsion polymer particles of a hollow core/shell structure in the presence of a monomer plasticizer having a ceiling temperature less than 181° C. wherein a polymerization inhibitor or reducing agent is not added to the aqueous emulsion of the core shell particles during the neutralization and swelling stage. The obtained core shell particles are useful in paints, paper coatings, foams, and cosmetics.
Abstract:
The invention relates to a method for producing emulsion polymer particles with a core-shell structure, and to the use thereof in paints, paper coatings, foams and cosmetic agents.
Abstract:
The present invention provides a process for preparing emulsion polymer particles of a hollow core/shell structure in the presence of a monomer plasticizer having a ceiling temperature less than 181° C. wherein a polymerization inhibitor or reducing agent is not added to the aqueous emulsion of the core shell particles during the neutralization and swelling stage. The obtained core shell particles are useful in paints, paper coatings, foams, and cosmetics.
Abstract:
Preparation for and a method of applying corrosion control coats to metallic surfaces, particularly the surfaces of metallic structures or metal constructions, the preparation comprising at least one binder system curable under atmospheric conditions, a dicarboxylic acid-olefin copolymer, and a finely divided filler, pigment or dye. Coated metallic surface obtainable by means of the method, especially the surface of metallic structures or metal constructions.
Abstract:
Disclosed is a method for applying corrosion-resistant layers, especially integrated pretreatment layers or layers for atmospheric corrosion protectio n, to metallic surfaces. In said method, copolymers are used which contain monomers comprising 20 to 70 percent by weight of nitrogen heterocyles, monomers comprising 10 to 50 percent of acidic groups, 10 to 50 percent by weight of vinyl aromatic monomers, and 0 to 25 percent by weight of other optional monomers as monomeric constitutional units. Also disclosed are copolymers having said composition as well as preparations for applying corrosion-resistant layers.
Abstract:
The present invention provides a process for preparing emulsion polymer particles of a hollow core/shell structure in the presence of a monomer plasticizer having a ceiling temperature less than 181° C. wherein a polymerization inhibitor or reducing agent is not added to the aqueous emulsion of the core shell particles during the neutralization and swelling stage. The obtained core shell particles are useful in paints, paper coatings, foams, and cosmetics.
Abstract:
La presente invencion se relaciona con un proceso para preparar particulas de polimero por emulsion que tienen una estructura de nucleo/coraza y tambien con su uso en pinturas, revestimientos de papel, espumas y cosmeticos.
Abstract:
The present invention provides a process for preparing emulsion polymer particles of a hollow core/shell structure in the presence of a monomer plasticizer having a ceiling temperature less than 181° C. wherein a polymerization inhibitor or reducing agent is not added to the aqueous emulsion of the core shell particles during the neutralization and swelling stage. The obtained core shell particles are useful in paints, paper coatings, foams, and cosmetics.
Abstract:
The disclosure relates to a method for producing emulsion polymer particles with a core-shell structure, and to the use thereof in paints, paper coatings, foams and cosmetic agents. Particularly disclosed is a process for preparing emulsion polymer particles by preparing an aqueous emulsion comprising a multistage emulsion polymer created by sequentially polymerising (i) a seed; (ii) a swell seed comprising 0 to 100% by weight of at least one nonionically ethylenically unsaturated monomer and 0 to 40% by weight of at least one monoethylenically unsaturated hydrophilic monomer, based in each case on the total weight of the core stage polymer comprising the seed (i) and the swell seed (ii); (iii) a first shell comprising 85% to 99.9% by weight of at least one nonionically ethylenically unsaturated monomer and 0.1% to 15% by weight of at least one hydrophilic monoethylenically unsaturated monomer; (iv) a second shell comprising 85% to 99.9% by weight of at least one nonionically ethylenically unsaturated monomer and 0.1% to 15% by weight of at least one hydrophilic monoethylenically unsaturated monomer; (v) at least one plasticizer monomer having a ceiling temperature of less than 181 Deg C, preferably less than 95 Deg C; (vi) neutralizing to a pH of at least 7.5, the resultant particles with a base a third shell comprising 90% to 99.9% by weight of at least one nonionically ethylenically unsaturated monomer and 0.1% to 10% by weight of at least one hydrophilic monoethylenically unsaturated monomer; and, (vii) if appropriate, further shells comprising at least one nonionically ethylenically unsaturated monomer and at least one hydrophilic monoethylenically unsaturated monomer. The term "seed" relates to an aqueous polymer dispersion which is used at the beginning of the multistage polymerization and is the product of an emulsion polymerization, or may relate to an aqueous polymer dispersion present at the end of one of the polymerization stages for preparing the hollow particle dispersion, with the exception of the last stage. The seed which is used at the beginning of the polymerization of the first stage can also be prepared in situ and is composed preferably of acrylic acid, methacrylic acid, esters of acrylic acid and methacrylic acid, or mixtures thereof. Particularly preferred mixtures are those of n-butyl acrylate, methyl methacrylate, and methacrylic acid.