Abstract:
PROBLEM TO BE SOLVED: To provide an anti-reflective coating composition that does not crosslink prior to a bake stage in microlithographic processes so as to solve problems of spin bowl incompatibility and stability of an anti-reflective coating. SOLUTION: The anti-reflective composition includes a polymer dissolved or dispersed in a solvent system, a crosslinking agent, a light attenuating compound and a strong acid. The polymer is selected from a group consisting of acrylic polymers, polyesters, epoxy novolacs, polysaccharides, polyethers, polyimides and mixtures thereof. The crosslinking agent is selected from a group consisting of amino resin and epoxy resin. The light attenuating compound is selected from a group consisting of phenolic compounds, carboxylic acid, phosphoric acid, cyano compounds, benzene, naphthalene and anthracene. The composition contains the strong acid by less than 1.0 mass% based upon the total mass of the composition taken as 100 mass%. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
Novel anti-reflective coatings comprising small molecules (e.g., less than about 5,000 g/mole) in lieu of high molecular weight polymers and methods of using those coatings are provided. In one embodiment, aromatic carboxylic acids are used as the chromophores, and the resulting compounds are blended with a crosslinking agent and an acid. Anti-reflective coating films prepared according to the invention exhibit improved properties compared to high molecular weight polymeric anti-reflective coating films. The small molecule anti-reflective coatings have high etch rates and good via fill properties. Photolithographic processes carried out with the inventive material result in freestanding, 110-nm profiles.
Abstract:
Novel anti-reflective coatings comprising small molecules (e.g., less than about 5,000 g/mole) in lieu of high molecular weight polymers and methods of using those coatings are provided. In one embodiment, aromatic carboxylic acids are used as the chromophores, and the resulting compounds are blended with a crosslinking agent and an acid. Anti-reflective coating films prepared according to the invention exhibit improved properties compared to high molecular weight polymeric anti-reflective coating films. The small molecule anti-reflective coatings have high etch rates and good via fill properties. Photolithographic processes carried out with the inventive material result in freestanding, 110-nm profiles.
Abstract:
Novel anti-reflective coatings comprising small molecules (e.g., less than about 5,000 g/mole) in lieu of high molecular weight polymers and methods of using those coatings are provided. In one embodiment, aromatic carboxylic acids are used as the chromophores, and the resulting compounds are blended with a crosslinking agent and an acid. Anti-reflective coating films prepared according to the invention exhibit improved properties compared to high molecular weight polymeric anti-reflective coating films. The small molecule anti-reflective coatings have high etch rates and good via fill properties. Photolithographic processes carried out with the inventive material result in freestanding, 110-nm profiles.
Abstract:
Anti-reflective compositions and methods of using those compositions to form circuits are provided. The compositions comprise a polymer dissolved or dispersed in a solvent system. In one embodiment, the compositions comprise less than about 0.3% by weight of a strong acid. In another embodiment, the weight ratio of strong acid to weak acid in the composition is from about 0:100 to about 25:75. Examples of preferred weak acid compounds include phenolic compounds (e.g., Bisphenol S, Bisphenol A, alpha-cyano-4-hydroxycinnamic acid), carboxylic acids (e.g., acetic acid), phosphoric acid, and cyano compounds. The polymer and other ingredients are preferably physically mixed in a solvent system. The resulting compositions are spin bowl compatible (i.e., they do not crosslink prior to the bake stages of the microlithographic processes or during storage at room temperature).