FLAT-PANEL DISPLAY WITH INTENSITY CONTROL TO REDUCE LIGHT-CENTROID SHIFTING
    1.
    发明申请
    FLAT-PANEL DISPLAY WITH INTENSITY CONTROL TO REDUCE LIGHT-CENTROID SHIFTING 审中-公开
    带强度控制的平板显示器可减少光线偏移

    公开(公告)号:WO0002081A3

    公开(公告)日:2000-04-20

    申请号:PCT/US9914679

    申请日:1999-06-29

    Abstract: The intensity at which electrons emitted by a first plate structure (10) in a slat-panel display strike a second plate structure (12) for causing it to emit light is controlled so as to reduce image degradation that could otherwise arise from undesired electron-trajectory changes caused by effects such as the presence of a spacer system (14) between the plate structures. An electron-emissive region (20) in the first plate structure typically contains multiple laterally separated electron-emissive portions (201 and 202) for selectively emitting electrons. An electron-focusing system in the first plate structure has corresponding focus openings (40p1 and 40p2) through which electrons emitted by the electron-emissive portions respectively pass. Upon being struck by the so-emitted electrons, a light-emissive region (22) in the second plate structure emits light to produce at least part of a dot of the display's image.

    Abstract translation: 通过板条显示器中的第一板结构(10)发射的电子撞击第二板结构(12)以使其发射光的强度被控制,以便减少否则可能由不希望的电子 - 由诸如在板结构之间存在间隔系统(14)的效应引起的轨迹变化。 第一板结构中的电子发射区域(20)通常包含多个横向分离的电子发射部分(201和202),用于选择性地发射电子。 第一板结构中的电子聚焦系统具有对应的聚焦开口(40p1和40p2),由电子发射部分发射的电子分别通过聚焦开口(40p1和40p2)。 在被如此发射的电子撞击时,第二板结构中的发光区域(22)发光以产生显示器图像的点的至少一部分。

    METHOD AND APPARATUS FOR CONDITIONING A FIELD EMISSION DISPLAY DEVICE
    4.
    发明公开
    METHOD AND APPARATUS FOR CONDITIONING A FIELD EMISSION DISPLAY DEVICE 有权
    方法和设备机上的场发射显示设备

    公开(公告)号:EP1116202A4

    公开(公告)日:2003-07-09

    申请号:EP99943611

    申请日:1999-07-08

    Abstract: A method of removing contaminant particles in newly fabricated filed emission displays. Contaminant particles are removed by a conditioning process which includes the steps of: a) driving an anode (20) of a field emission display (FED) to a predetermined voltage; b) slowly increasing an emission current of the FED after the anode has reached the predetermined voltage; and c) providing an ion-trapping device for catching the ions and particles knocked off, or otherwise released, by emitted electrons (40). By driving the anode to the predetermined voltage and by slowly increasing the emission current of the FED, contaminant particles are effectively removed without damaging the FED. A method of operating FEDs is also provided to prevent gate-to-emitter current during turn-on and turn-off, which comprises the steps of: a) enabling the anode display screen (20); and b) enabling the electron-emitters (40) after the anode display screen is enabled. By allowing sufficient time for the anode display screen to reach a predetermined voltage before the emitter is enabled, the emitted electrons (40) will be attracted to the anode (20).

    5.
    发明专利
    未知

    公开(公告)号:DE69935343D1

    公开(公告)日:2007-04-12

    申请号:DE69935343

    申请日:1999-07-08

    Abstract: A method of removing contaminant particles in newly fabricated filed emission displays. Contaminant particles are removed by a conditioning process which includes the steps of: a)driving an anode (20) of a field emission display (FED) to a predetermined voltage; b) slowly increasing an emission current of the FED after the anode has reached the predetermined voltage; and c) providing an ion-trapping device for catching the ions and particles knocked off, or otherwise released, by emitted electrons (40). By driving the anode to the predetermined voltage and by slowly increasing the emission current of the FED, contaminant particles are effectively removed without damaging the FED. A method of operating FEDs is also provided to prevent gate-to-emitter current during turn-on and turn-off, which comprises the steps of: a) enabling the anode display screen (20); and b) enabling the electron-emitters (40) after the anode display screen is enabled. By allowing sufficient time for the anode display screen to reach a predetermined voltage before the emitter is enabled, the emitted electrons (40) will be attracted to the anode (20).

Patent Agency Ranking