Abstract:
A field emitter device formed by a veil process wherein a protective layer including a release layer is deposited on a gate electrode layer (62) for the device, the protective layer overlaying the circumscribing peripheral edge of the opening of the gate electrode layer (62) to protect the edge of the gate electrode layer (62) during etching of a field emitter cavity (72) in a dielectric material layer (30) on a substrate (12) and during the formation of a field emitter element (40) in the cavity by depositing a field emitter material through the opening (72). The protective layer is readily removed subsequent to completion of the cavity etching formation steps, to yield the field emitter device. The field emission device further includes a current limiter composition (14) for permitting high frequency emission of electrons from the field emitter element (40) at low turn-on voltage.
Abstract:
A microelectronic field emitter device (50) comprising a substrate (78), a conductive pedestal (64) on said substrate, and an edge emitter electrode on said pedestal, wherein the edge emitter electrode comprises an emitter cap layer (66) having an edge (68). The invention also contemplates a current limiter for a microelectronic field emitter device, which comprises a semi-insulating material selected from the group consisting of SiO, SiO+Cr (0 to 50 wt.%), SiO2 + Cr (0 to 50 wt.%), SiO + Nb, Al2O3 and SixOyNz sandwiched between an electron injector and a hole injector. Another aspect of the invention relates to a microelectronic field emitter device comprising a substrate (240), an emitter conductor (242) on such substrate, and a current limiter stack (244) formed on said substrate, such stack having a top (246) and at least one edge (248, 250), a resistive strap (266) on top of the stack, extending over the edge in electrical contact with the emitter conductor; and an emitter electrode on the current limiter stack over the resistive strap.
Abstract:
A structure to reduce the likelihood of flashover in a parallel plate electron beam array is disclosed. The structure may comprise a means for generating a low intensity electric field in the vicinity of a spacer (200) separating the parallel plate of the array (100), and the anode (300). The presence of the electric field in the vicinity of the spacer is not conductive to the occurrence of a surface supported flashover on the gates and emitters. The electric field means may be provided by a conductive coating (240) on one or more surfaces of the spacer. Alternatively, the electric field means may be provided by a conductive coating on a guard ring located within the array in the vicinity of the spacer. Methods of making the structure are also disclosed.
Abstract:
A field emitter device includes a column conductor (22), an insulator (23), and a resistor structure (32) for advantageously limiting current in a field emitter array. A wide column conductor (22) is deposited on an insulating substrate (21). An insulator (47) is laid over the column conductor (22). A high resistance layer (32) is placed on the insulator (23) and is physically isolated from the column conductor (22). The high resistance material may be chromium oxide or 10-50 wt.% Cr+SiO. A group of microtip electron emitters (30) is placed over the high resistance layer (32) to connect in an electrical series circuit the colum conductor (22), the high resistance layer (32), and the group of electron emitters (30). One or more layers of insulator (23) and a gate electrode (24), all with cavities for the electron emitters, are laid over the high resistance material (32). One layer of insulator is selected from a group of materials including SiC, SiO, and Si3N4. An anode plate (60) is attached with intermediate space (70) between the anode plate (60) and the microtip electron emitters (30) being evacuated.
Abstract:
A spacer structure (10) for use in a flat panel display (100), and a corresponding flat panel display article (100) are disclosed, together with an appertaining method of fabricating the spacer structure utilizing a photosensitive precursor material which is selectively irradiated, developed and etchingly processed to produce shaped standoff elements for a unitary spacer structure. The spacer structure may be dimensionally fabricated to precisely align with a selected pixel region, comprising a single pixel or an array of pixels, e.g., a color (red, blue, green) triad.
Abstract:
A field emitter structure, comprising: a base substrate; a field emitter element on the base substrate; a multilayer differentially etched dielectric stack circumscribingly surrounding the field emitter element on the base substrate; and a gate electrode overlying the multilayer differentially etched dielectric stack, and in circumscribing spaced relationship to the field emitter element. Also disclosed are electron source devices, comprising an electron emitter element including a material selected from the group consisting of leaky dielectric materials, and leaky insulator materials, as well as electron source devices, comprising an electron emitter element including an insulator material doped with a tunneling electron emission enhancingly effective amount of a dopant species, and thin film triode devices.
Abstract:
A field emitter array magnetic sensor (FEAMS) device, comprising: an anode; a base plate member having on a first side thereof a plurality of gated field emitter elements thereon, in spaced proximal relationship to the anode. The plurality of gated field emitter elements and the anode structure are arranged so that each of the gated field emitter elements is in electron emitting relationship to varying electron impingement sites depending on intensity of the magnetic field on the gated field emitter element. The device includes structure for sensing the locations of the anode structure electron impingement sites receiving electrons from the plurality of gated field emitter elements, and determining the strength and orientation of the magnetic field. Also disclosed are various anode configurations which may be usefully employed in the FEAMS device of the invention.
Abstract:
The invention is directed to an electrode structure (500) for an organic lightemitting device display (10). The electrode structure includes a transparent electrode (510) and a high conductivity rib (550). The structure (500) provides top side light output and a low line resistance, and enables a high resolution display. The structure permits a display to be built on top of a silicon driver chip for active matrix addressing.
Abstract:
A sealing structure (190) for an organic light emitting device display (100). The sealing structure (190) comprises a metal film (175) overlying a dielectric film (150). The sealing structure (190) has low moisture and oxygen permeability. At least one of the metal layers (175) may react with moisture or oxygen to seal off pin holes. A net low stress sealing structure (190) may be formed by combining tensile and compressive films. The sealing structure (190) may be etched to create openings (160) for connection to outside circuitry. The innovative sealing structure (190) minimizes moisture leakage and vertical shorts between diode cathode (900) and anode (400).
Abstract:
A spacer structure (10) for use in a flat panel display (100), and a corresponding flat panel display article (100) are disclosed, together with an appertaining method of fabricating the spacer structure utilizing a photosensitive precursor material which is selectively irradiated, developed and etchingly processed to produce shaped standoff elements for a unitary spacer structure. The spacer structure may be dimensionally fabricated to precisely align with a selected pixel region, comprising a single pixel or an array of pixels, e.g., a color (red, blue, green) triad.