Abstract:
PROBLEM TO BE SOLVED: To provide a system, a method and a computer program for analyzing circuit design. SOLUTION: This system, this method and this computer program for analyzing circuit design provide a means for discretizing a circuit pattern into a series of pixels. A fraction of at least one constituent material is determined for each pixel. A deflection is also determined for each pixel. The deflection is predicated upon a planarizing of the pixel, and it is calculated while utilizing an algorithm that includes the fraction of the at least one constituent material. A series of deflections for the series of pixels may be mapped and evaluated. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
A method of determining a stopping power of a design structure with respect to a traveling particle. The method includes (i) providing design information of the design structure comprising a back-end-of-line layer which includes N interconnect layers, N being a positive integer, (ii) dividing each interconnect layer of the N interconnect layers into multiple pixels, and (iii) determining a first path of the traveling particle in a first interconnect layer of the N interconnect layers, (iv) identifying M path pixels of the multiple pixels of the first interconnect layer on the first path of the traveling particle, M being a positive integer, and (v) determining a first loss energy lost by the traveling particle due to its completely passing through a first pixel of the M path pixels.
Abstract:
Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
Abstract:
A method of fabricating a FET device is provided which includes the following steps. Nanowires/pads are formed in a SOI layer over a BOX layer, wherein the nanowires are suspended over the BOX. A HSQ layer is deposited that surrounds the nanowires. A portion(s) of the HSQ layer that surround the nanowires are cross-linked, wherein the cross-linking causes the portion(s) of the HSQ layer to shrink thereby inducing strain in the nanowires. One or more gates are formed that retain the strain induced in the nanowires. A FET device is also provided wherein each of the nanowires has a first region(s) that is deformed such that a lattice constant in the first region(s) is less than a relaxed lattice constant of the nanowires and a second region(s) that is deformed such that a lattice constant in the second region(s) is greater than the relaxed lattice constant of the nanowires.
Abstract:
Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
Abstract:
Es werden Techniken zur Einbettung von Silicium-Germanium(e-SiGe)-Source- und Drain-Stressoren in nanoskaligen kanalbasierten Feldeffekttransistoren (FETs) bereitgestellt. Nach einem Aspekt der Erfindung beinhaltet ein Verfahren zum Herstellen eines FET die folgenden Schritte. Ein dotiertes Substrat mit einem darauf befindlichen Dielektrikum wird bereitgestellt. Mindestens ein Silicium-(Si-)Nanodraht wird auf dem Dielektrikum platziert. Ein oder mehrere Teile des Nanodrahtes werden mit einer Maske abgedeckt, wobei andere Teile des Nanodrahtes freiliegend bleiben. Epitaktisches Germanium (Ge) wird auf den freiliegenden Teilen des Nanodrahtes aufgewachsen. Das epitaktische Germanium wird in das Si im Nanodraht eindiffundiert, um die im Nanodraht eingebetteten SiGe-Zonen auszubilden, die die Druckspannung in den Nanodraht einbringen. Das dotierte Substrat dient als Gate des FET, die durch Maske abgedeckten Teile des Nanodrahtes dienen als Kanäle des FET, und die eingebetteten SiGe-Zonen dienen als Source- und Drain-Zonen des FET.