Abstract:
Through-chip conductors for low inductance chip-to-chip integration and off-chip connections in a semiconductor package is disclosed. A semiconductor device has active devices on the front surface, a first through-chip conductor having first electrical/physical characteristics passing from the front surface of the device to the back surface, a second through-chip conductor having second electrical/physical characteristics passing to the back surface, and an off-chip or chip-to-chip connector electrically connecting the active devices on the front surface to a different level of packaging.
Abstract:
A method is described for fabricating and antifuse structure (100) integrated with a semiconductor device such as a FINFET or planar CMOS devise. A region of semiconducting material (11) is provided overlying an insulator (3) disposed on a substrate (10); an etching process exposes a plurality of corners (111-114) in the semiconducting material. The exposed corners are oxidized to form elongated tips (111t-114t) at the corners; the oxide (31) overlying the tips is removed. An oxide layer (51), such as a gate oxide, is then formed on the semiconducting material and overlying the corners; this layer has a reduced thickness at the corners. A layer of conducting material (60) is formed in contact with the oxide layer (51) at the corners, thereby forming a plurality of possible breakdown paths between the semiconducting material and the layer of conducting material through the oxide layer. Applying a voltage, such as a burn-in voltage, to the structure converts at least one of the breakdown paths to a conducting path (103, 280).
Abstract:
An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit.
Abstract:
PROBLEM TO BE SOLVED: To provide an electrically programmable fuse structure for IC, and its manufacturing method. SOLUTION: This electrically programmable fuse has a first terminal part and second terminal part that are interconnected with fuse and elements. The first terminal part and second terminal part exist in different heights to the support surface of the fuse structure. The interconnecting fuse element connects the height difference between the height of the first terminal part and the second terminal part. While the first terminal part and second terminal part are oriented to be parallel with the support surface, the fuse element include a part oriented to be a right angle to the support surface, and also include at least one right-angled curvature portion that connects at least one of the first terminal element and second terminal element and the part of the fuse element oriented to be right angle. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To prevent read-out disturbance from an unselected cell by reading out a written word value stored on a storage node by means of a read transistor via a diode between bit lines. SOLUTION: When a write transistor Tw0 in a gain cell 20 is operated by a write-in word line WLW0, a value of a write-in bit line BLW0 is stored on the storage node SN0. When a read-out word line WLR0 is enabled to work, the read transistor Tr0 to be connected with the storage node SN0 in this case is connected via the diode D0 to a read-out bit line BLR0, so as to read out the stored value. The diode D0 is capable of preventing conductivity in the reverse direction of the read transistor Tr0, thus preventing disturbance from another cell, and also decreasing capacitance of the bit line. The same is the case with the other memory cells.
Abstract:
PROBLEM TO BE SOLVED: To provide a method of executing an electrical function such as a fusing operation by activation through a chip-embedded photodiode through spectrally selected external light activation, a corresponding structure, and a corresponding circuit. SOLUTION: In conjunction with additional circuit elements to an integrated circuit, incident light with specific intensity/wave length characteristics performs the implementation of repairs. More specifically, failing circuit elements are replaced with redundant ones for yield and/or reliability, and, after a packaged chip is placed in the system, the incident light makes an ESD protection device be disconnected from input pad. No additional pins on the package are necessary. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a semiconductor structure including at least one e-fuse, and a manufacturing method which is easily integrated with standard semiconductor technologies, thus minimizing implementation costs. SOLUTION: A semiconductor structure includes at least one e-fuse embedded in a trench that is located in a semiconductor substrate (a bulk or semiconductor-on-insulator substrate). According to the present invention, the e-fuse is in electrical contact with a dopant region that is located in the semiconductor substrate. The present invention also provides a method of manufacturing the semiconductor structure in which the embedded e-fuse and trench isolation regions are formed almost at the same time. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a structure and a method for forming a thermistor. SOLUTION: An isolation region is formed in a substrate including at least an upper side layer of a single crystal semiconductor. A salicide precursor layer is formed on the isolation region and the upper side layer. Then, reaction of the salicide precursor and the upper side layer is performed and a salicide which is self-aligned to the upper side layer is formed. Finally, no reaction portion of the salicide precursor is removed, while preserving the portion of the salicide precursor on the isolation region as the main body of the thermistor. In alternative method, an integrated circuit thermistor is formed from a thermistor material region in an embossed region of interlayer dielectric (ILD). COPYRIGHT: (C)2005,JPO&NCIPI