CIRCUIT STRUCTURE AND METHOD FOR PROGRAMMING AND RE-PROGRAMMING A LOW POWER, MULTIPLE STATES, ELECTRONIC FUSE(E-FUSE)
    3.
    发明申请
    CIRCUIT STRUCTURE AND METHOD FOR PROGRAMMING AND RE-PROGRAMMING A LOW POWER, MULTIPLE STATES, ELECTRONIC FUSE(E-FUSE) 审中-公开
    用于编程和重新编程低功率,多状态电子保险丝(电子保险丝)的电路结构和方法

    公开(公告)号:WO2011002612A3

    公开(公告)日:2011-03-10

    申请号:PCT/US2010038934

    申请日:2010-06-17

    Abstract: Disclosed are embodiments of an e-fuse programming/re-programming circuit. In one embodiment, the e-fuse (150) has two short high atomic diffusion resistance conductor layers (110, 130) positioned on opposite sides (121, 122) and at a same end (123) of a long low atomic diffusion resistance conductor layer (120). A voltage source (170) is used to vary the polarity and, optionally, the magnitude of voltage applied to the terminals (first terminal = 170/161/110; second terminal = 170/162/130; third terminal = 170/163/proximate end 123 of conductor layer 120; and, fourth terminal = 170/164/distal end 124 of conductor layer 120) in order to control bi-directional flow of electrons within the long conductor layer and, thereby formation of opens and/or shorts at the long conductor layer-short conductor layer interfaces (125, 126). The formation of such opens and/or shorts can be used to achieve different programming states (11, 01, 10, 00). Other circuit structure embodiments incorporate e-fuses (650) with additional conductor layers and additional terminals so as to allow for even more programming states. Also disclosed are embodiments of associated e-fuse programming and re-programming methods.

    Abstract translation: 公开了电子熔丝编程/重新编程电路的实施例。 在一个实施例中,电子熔丝(150)具有两个短的高原子扩散电阻导体层(110,130),其位于长的低原子扩散电阻导体(110,130)的相对侧(121,122)上和同一端(123) 层(120)。 使用电压源(170)来改变施加到端子(第一端= 170/161/110;第二端= 170/162/130;第三端= 170/163 / 以控制导体层120的近端123;以及导体层120的第四端子= 170/164 /远端124),以便控制长导体层内电子的双向流动,从而形成开路和/或短路 在长导体层 - 短导体层界面(125,126)处。 这种开路和/或短路的形成可以用来实现不同的编程状态(11,01,10,00)。 其他电路结构实施例将e熔丝(650)与额外的导体层和额外的端子结合,以允许更多的编程状态。 还公开了相关联的电子熔丝编程和重新编程方法的实施例。

    METHOD AND DEVICE FOR ENHANCING LATCH-UP RESISTANCE IN CMOS DEVICE

    公开(公告)号:JPH10261766A

    公开(公告)日:1998-09-29

    申请号:JP3990998

    申请日:1998-02-23

    Applicant: IBM

    Abstract: PROBLEM TO BE SOLVED: To improve a CMOS device in latch-up resistance by a method wherein an injected part formed under a shallow trench isolation between an N-channel device and a P-channel device is used. SOLUTION: An N-channel device is isolated from a P-channel device by the use of a shallow trench isolation STI 102. The shallow trench isolation STI 102 is formed by removing a part of a wafer which is not covered with a masking layer 104 through a reactive ion etching method. In a following process, an N-channel device and a P-channel device are formed on a wafer part 100. Then, element is injected to form an injected part 106 below the STI 102. It is preferable that the element of the injected part 106 is selected so as to make an N well or a P well minimum in counter doping. Therefore, it is preferable that the element contains large and heavy element.

    ELECTRON STRUCTURE BODY AND MANUFACTURING METHOD THEREFOR

    公开(公告)号:JP2002270697A

    公开(公告)日:2002-09-20

    申请号:JP2002021072

    申请日:2002-01-30

    Applicant: IBM

    Abstract: PROBLEM TO BE SOLVED: To provide efficient heat radiation which is related to an SOI structure, by forming a semiconductor device located beneath an embedded insulation layer, which is in turn electrically connected to an electrical structure body formed on the SOI structure. SOLUTION: The SOI structure is formed on a bulk semiconductor substrate. A trench, whose one end interfaces with the bulk semiconductor substrate is formed penetrating through the SOI layer. A semiconductor device, comprising a P diffusion region and N diffusion region, is formed on the bulk semiconductor substrate. A conductive plug, which self-matching with the P diffusion region and N diffusion region, while electrically contacting them, is formed in the trench. The semiconductor device formed in the bulk semiconductor substrate can contain an electrostatic discharge(ESD) device. The bulk semiconductor substrate functions as a medium for efficiently radiating heat generated by the (ESD) device, since its thermal conductivity is high.

    Halbleiter-auf-Isolator-Einheit mit asymmetrischer Struktur

    公开(公告)号:DE112012000264T5

    公开(公告)日:2013-10-02

    申请号:DE112012000264

    申请日:2012-01-20

    Applicant: IBM

    Abstract: Einheitenstrukturen mit einer verringerten Übergangsfläche in einem SOI-Prozess, Verfahren zum Fertigen der Einheitenstrukturen und Konstruktionsstrukturen für eine Lateraldiode (56). Die Einheitenstruktur beinhaltet einen oder mehrere dielektrische Bereiche (20a, 20b, 20c) wie zum Beispiel STI-Bereiche, die in dem Einheitenbereich (18) positioniert sind und sich mit dem p-n-Übergang (52, 54) zwischen einer Anode (40, 42) und einer Kathode (28, 30, 48a, 48b, 49a, 49b, 50a, 50b) überschneiden. Die dielektrischen Bereiche, die mithilfe von Techniken für flache Grabenisolationen ausgebildet werden können, dienen dazu, die Breite eines p-n-Übergangs im Hinblick auf die Breitenfläche der Kathode an einer Position zu verringern, die seitlich von dem p-n-Übergang und der Anode beabstandet ist. Der Breitenunterschied und das Vorhandensein der dielektrischen Bereiche erzeugt eine asymmetrische Diodenstruktur. Das Volumen des Einheitenbereichs, das durch die dielektrischen Bereiche eingenommen wird, wird so weit wie möglich verringert, um das Volumen der Kathode und der Anode zu erhalten.

    SCHALTKREISSTRUKTUR UND VERFAHREN ZUM PROGRAMMIEREG (eFUSE) FÜRGERINGE LEISTUNG UND MIT MEHREREN ZUSTÄNDEN

    公开(公告)号:DE112010002791T5

    公开(公告)日:2012-08-23

    申请号:DE112010002791

    申请日:2010-06-17

    Applicant: IBM

    Abstract: Es werden Ausführungsarten eines Schaltkreises zum Programmieren/Umprogrammieren einer elektronischen Sicherung beschrieben. Bei einer Ausführungsart weist die elektronische Sicherung (150) zwei kurze Leiterschichten (110, 130) mit hohem Atomdiffusionswiderstand auf, die an entgegengesetzten Seiten (121, 122) und am selben Ende (123) einer langen Leiterschicht mit niedrigem Atomdiffusionswiderstand (120) angeordnet sind. Eine Spannungsquelle (170) wird verwendet, um die Polarität und wahlweise die Höhe der an die Anschlussklemmen (erste Anschlussklemme = 170/161/110; zweite Anschlussklemme = 170/162/130; dritte Anschlussklemme = 170/163/zugewandtes Ende 123 der Leiterschicht 120; und vierte Anschlussklemme = 170/164/abgewandtes Ende 124 der Leiterschicht 120) zu ändern, um den bidirektionalen Elektronenfluss innerhalb der langen Leiterschicht und dadurch die Bildung von Leitungsunterbrechungen und/oder Kurzschlüssen an den Grenzflächen (125, 126) zwischen den langen Leiterschichten und den kurzen Leiterschichten zu steuern. Die Bildung solcher Leitungsunterbrechungen und/oder Kurzschlüsse kann zum Erzeugen verschiedener Programmierzustände (11, 01, 10, 00) verwendet werden. Andere Ausführungsarten der Schaltkreisstruktur beinhalten elektronische Sicherungen (650) mit zusätzlichen Leiterschichten und zusätzlichen Anschlussklemmen, um eine größere Anzahl von Programmierzuständen zu ermöglichen. Ferner werden auch zugehörige Verfahren zum Programmieren und Umprogrammieren einer elektronischen Sicherung beschrieben.

Patent Agency Ranking