Abstract:
A method is described for fabricating and antifuse structure (100) integrated with a semiconductor device such as a FINFET or planar CMOS devise. A region of semiconducting material (11) is provided overlying an insulator (3) disposed on a substrate (10); an etching process exposes a plurality of corners (111-114) in the semiconducting material. The exposed corners are oxidized to form elongated tips (111t-114t) at the corners; the oxide (31) overlying the tips is removed. An oxide layer (51), such as a gate oxide, is then formed on the semiconducting material and overlying the corners; this layer has a reduced thickness at the corners. A layer of conducting material (60) is formed in contact with the oxide layer (51) at the corners, thereby forming a plurality of possible breakdown paths between the semiconducting material and the layer of conducting material through the oxide layer. Applying a voltage, such as a burn-in voltage, to the structure converts at least one of the breakdown paths to a conducting path (103, 280).
Abstract:
PROBLEM TO BE SOLVED: To provide a design structure and a method for an electrostatic discharge (ESD) silicon controlled rectifier (SCR) Structure. SOLUTION: This design structure is embodied in a machine-readable medium for designing, manufacturing, or testing a design. The design structure includes first and second silicon controlled rectifiers (SCRs) formed in a substrate. Furthermore, the first and the second SCRs each includes at least one component which is commonly shared between the first and the second SCRs. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
Disclosed are embodiments of an e-fuse programming/re-programming circuit. In one embodiment, the e-fuse (150) has two short high atomic diffusion resistance conductor layers (110, 130) positioned on opposite sides (121, 122) and at a same end (123) of a long low atomic diffusion resistance conductor layer (120). A voltage source (170) is used to vary the polarity and, optionally, the magnitude of voltage applied to the terminals (first terminal = 170/161/110; second terminal = 170/162/130; third terminal = 170/163/proximate end 123 of conductor layer 120; and, fourth terminal = 170/164/distal end 124 of conductor layer 120) in order to control bi-directional flow of electrons within the long conductor layer and, thereby formation of opens and/or shorts at the long conductor layer-short conductor layer interfaces (125, 126). The formation of such opens and/or shorts can be used to achieve different programming states (11, 01, 10, 00). Other circuit structure embodiments incorporate e-fuses (650) with additional conductor layers and additional terminals so as to allow for even more programming states. Also disclosed are embodiments of associated e-fuse programming and re-programming methods.
Abstract:
PROBLEM TO BE SOLVED: To provide a method of executing an electrical function such as a fusing operation by activation through a chip-embedded photodiode through spectrally selected external light activation, a corresponding structure, and a corresponding circuit. SOLUTION: In conjunction with additional circuit elements to an integrated circuit, incident light with specific intensity/wave length characteristics performs the implementation of repairs. More specifically, failing circuit elements are replaced with redundant ones for yield and/or reliability, and, after a packaged chip is placed in the system, the incident light makes an ESD protection device be disconnected from input pad. No additional pins on the package are necessary. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To improve a CMOS device in latch-up resistance by a method wherein an injected part formed under a shallow trench isolation between an N-channel device and a P-channel device is used. SOLUTION: An N-channel device is isolated from a P-channel device by the use of a shallow trench isolation STI 102. The shallow trench isolation STI 102 is formed by removing a part of a wafer which is not covered with a masking layer 104 through a reactive ion etching method. In a following process, an N-channel device and a P-channel device are formed on a wafer part 100. Then, element is injected to form an injected part 106 below the STI 102. It is preferable that the element of the injected part 106 is selected so as to make an N well or a P well minimum in counter doping. Therefore, it is preferable that the element contains large and heavy element.
Abstract:
PROBLEM TO BE SOLVED: To provide efficient heat radiation which is related to an SOI structure, by forming a semiconductor device located beneath an embedded insulation layer, which is in turn electrically connected to an electrical structure body formed on the SOI structure. SOLUTION: The SOI structure is formed on a bulk semiconductor substrate. A trench, whose one end interfaces with the bulk semiconductor substrate is formed penetrating through the SOI layer. A semiconductor device, comprising a P diffusion region and N diffusion region, is formed on the bulk semiconductor substrate. A conductive plug, which self-matching with the P diffusion region and N diffusion region, while electrically contacting them, is formed in the trench. The semiconductor device formed in the bulk semiconductor substrate can contain an electrostatic discharge(ESD) device. The bulk semiconductor substrate functions as a medium for efficiently radiating heat generated by the (ESD) device, since its thermal conductivity is high.
Abstract:
PROBLEM TO BE SOLVED: To provide an FET where an inverse short channel effect is reduced as well as a method for forming it. SOLUTION: Germanium is so implanted over the entire semiconductor substrate at an appropriate intensity and quantity that a peak ion concentration is generated under the source and drain of the FET. The germanium is implanted before the gate, source, and drain are formed, so an inversion short channel effect which is shown with normal FETs is reduced. The short channel effect occurring with the normal FETs is never affected by implantation of germanium.
Abstract:
Einheitenstrukturen mit einer verringerten Übergangsfläche in einem SOI-Prozess, Verfahren zum Fertigen der Einheitenstrukturen und Konstruktionsstrukturen für eine Lateraldiode (56). Die Einheitenstruktur beinhaltet einen oder mehrere dielektrische Bereiche (20a, 20b, 20c) wie zum Beispiel STI-Bereiche, die in dem Einheitenbereich (18) positioniert sind und sich mit dem p-n-Übergang (52, 54) zwischen einer Anode (40, 42) und einer Kathode (28, 30, 48a, 48b, 49a, 49b, 50a, 50b) überschneiden. Die dielektrischen Bereiche, die mithilfe von Techniken für flache Grabenisolationen ausgebildet werden können, dienen dazu, die Breite eines p-n-Übergangs im Hinblick auf die Breitenfläche der Kathode an einer Position zu verringern, die seitlich von dem p-n-Übergang und der Anode beabstandet ist. Der Breitenunterschied und das Vorhandensein der dielektrischen Bereiche erzeugt eine asymmetrische Diodenstruktur. Das Volumen des Einheitenbereichs, das durch die dielektrischen Bereiche eingenommen wird, wird so weit wie möglich verringert, um das Volumen der Kathode und der Anode zu erhalten.
Abstract:
Es werden Ausführungsarten eines Schaltkreises zum Programmieren/Umprogrammieren einer elektronischen Sicherung beschrieben. Bei einer Ausführungsart weist die elektronische Sicherung (150) zwei kurze Leiterschichten (110, 130) mit hohem Atomdiffusionswiderstand auf, die an entgegengesetzten Seiten (121, 122) und am selben Ende (123) einer langen Leiterschicht mit niedrigem Atomdiffusionswiderstand (120) angeordnet sind. Eine Spannungsquelle (170) wird verwendet, um die Polarität und wahlweise die Höhe der an die Anschlussklemmen (erste Anschlussklemme = 170/161/110; zweite Anschlussklemme = 170/162/130; dritte Anschlussklemme = 170/163/zugewandtes Ende 123 der Leiterschicht 120; und vierte Anschlussklemme = 170/164/abgewandtes Ende 124 der Leiterschicht 120) zu ändern, um den bidirektionalen Elektronenfluss innerhalb der langen Leiterschicht und dadurch die Bildung von Leitungsunterbrechungen und/oder Kurzschlüssen an den Grenzflächen (125, 126) zwischen den langen Leiterschichten und den kurzen Leiterschichten zu steuern. Die Bildung solcher Leitungsunterbrechungen und/oder Kurzschlüsse kann zum Erzeugen verschiedener Programmierzustände (11, 01, 10, 00) verwendet werden. Andere Ausführungsarten der Schaltkreisstruktur beinhalten elektronische Sicherungen (650) mit zusätzlichen Leiterschichten und zusätzlichen Anschlussklemmen, um eine größere Anzahl von Programmierzuständen zu ermöglichen. Ferner werden auch zugehörige Verfahren zum Programmieren und Umprogrammieren einer elektronischen Sicherung beschrieben.