Abstract:
A digital optical switch apparatus and method for manufacture. The apparatus includes a mirror assembly (112) coupled to a top cap (110) and to a bottom cap (114).
Abstract:
The present invention provides merged-mask processes for fabricating micro-machined devices in general and mirrored assemblies for use in optical scanning devices in particular. The process includes (a) providing a substrate having a predetermined thickness; (b) applying a first masking layer on a first portion of the substrate and a second masking layer on a second portion of the substrate, said second masking layer being at least as thick as the first masking layer; (c) etching a portion of the second masking layer to provide a first exposed portion of the substrate; (d) etching the first exposed portion of the substrate to a first depth; (e) etching the second masking layer to provide a second exposed portion of the substrate; and (f) etching simultaneously the first exposed portion of the substrate to a second depth and the second exposed portion of the substrate to a first depth. The process further comprises patterning the first masking layer before applying the second masking layer to provide the second portion of the substrate for etching and etching the first masking layer to expose the second portion of the substrate. The first and second masking layers are applied prior to etching the substrate.
Abstract:
A micro machined mirror assembly is provided that includes a micro machined top cap (205), mirror (210), and bottom cap (215) mounted onto a ceramic substrate. The micro machined mirror is resiliently supported by a pair of T-shaped hinges and includes travel stops that limit motion of the mirror in the x-, y-, and z-directions. The top and bottom micro machined caps also include travel stops that limit motion of the mirror in the z-direction.
Abstract:
A system for acquiring environnemental information measurements. The 5 system (100) utilizes a sensor, (205) a front-end circuit, (310) a loop filter (315), a switch controller (206), and a recuced-oder loop control circuit to provide reliable data measurements while providing robust system behavior. The system further includes a sensor simulator (330) for simulating the operation of the sensor (205) and testing the operation of the front-end circuit (310) nd the loop filter (315).
Abstract:
A system for acquiring environnemental information measurements. The 5 system (100) utilizes a sensor, (205) a front-end circuit, (310) a loop filter (315), a switch controller (206), and a recuced-oder loop control circuit to provide reliable data measurements while providing robust system behavior. The system further includes a sensor simulator (330) for simulating the operation of the sensor (205) and testing the operation of the front-end circuit (310) nd the loop filter (315).
Abstract:
A system for acquiring environnemental information measurements. The 5 system (100) utilizes a sensor, (205) a front-end circuit, (310) a loop filter (315), a switch controller (206), and a recuced-oder loop control circuit to provide reliable data measurements while providing robust system behavior. The system further includes a sensor simulator (330) for simulating the operation of the sensor (205) and testing the operation of the front-end circuit (310) nd the loop filter (315).
Abstract:
An accelerometer comprising a measuring mass (1405) for detecting acceleration, including a housing having a cavity, one or more spring mass assemblies (1400) positioned within the cavity, wherein each spring mass assembly (1400) includes a support structure (1410), including one or more resilient folded beams (1415a-1415d) coupled to the support structure (1410) and the measuring mass (1405) is coupled to the resilent folded beams (1415a-1415d), wherein one or more electrode patterns are coupled to the spring mass assembly (1400), wherein a top cap wafer, including a top capacitor electrode, is coupled to the measurement mass (1405), and a bottom cap wafer, including a bottom capacitor electrode, is also coupled to measurement mass (1405).
Abstract:
A micro machined structure includes one or more temporary bridges for temporarily coupling the micro machined structure to a support structure.
Abstract:
The present invention provides merged-mask processes for fabricating micro-machined devices in general and mirrored assemblies for use in optical scanning devices in particular. The process includes (a) providing a substrate having a predetermined thickness; (b) applying a first masking layer on a first portion of the substrate and a second masking layer on a second portion of the substrate, said second masking layer being at least as thick as the first masking layer; (c) etching a portion of the second masking layer to provide a first exposed portion of the substrate; (d) etching the first exposed portion of the substrate to a first depth; (e) etching the second masking layer to provide a second exposed portion of the substrate; and (f) etching simultaneously the first exposed portion of the substrate to a second depth and the second exposed portion of the substrate to a first depth. The process further comprises patterning the first masking layer before applying the second masking layer to provide the second portion of the substrate for etching and etching the first masking layer to expose the second portion of the substrate. The first and second masking layers are applied prior to etching the substrate.
Abstract:
A system for acquiring environnemental information measurements. The 5 system (100) utilizes a sensor, (205) a front-end circuit, (310) a loop filter (315), a switch controller (206), and a recuced-oder loop control circuit to provide reliable data measurements while providing robust system behavior. The system further includes a sensor simulator (330) for simulating the operation of the sensor (205) and testing the operation of the front-end circuit (310) nd the loop filter (315).