Abstract:
PROBLEM TO BE SOLVED: To provide a system which relates to a non-destructive technology for measuring a surface parameter of a sample for measuring the birefringence of a surface, a film thickness, etc. using a polarimetric spectrum. SOLUTION: A polarized sample beam 46 of broadband radiation is focused to the surface of a sample 3 and the radiation polarized by the sample is collected by a mirror system in different planes of incidence. The modulated radiation is analyzed with respect to a polarization plane to provide a polarimetric spectrum. Thickness and refractive information may then be derived from the spectrum. The polarization of the sample beam is altered by the focusing and the sample, and the collection of the modulated radiation is repeated employing two different apertures 28 to detect the presence or absence of a birefringence axis in the sample. In the other preferred embodiment, the technology may be combined with ellipsometry for determining the thicknesses and refractive indices of thin films. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide an ellipsometer with a self-calibrating capability regarding a system for measuring surface characteristics of a sample such as a semiconductor device. SOLUTION: Two phase modulators or polarizing elements are employed to modulate the polarization of a beam before and after the sample 20 is irradiated with the reference radiation beam 11. The modulated radiation from the sample is detected and harmonics to an analyzer 26 are derived from a detected signal. The harmonics to the analyzer 26 may be used for deriving an ellipsometry parameter and a system parameter for fixed polarizing elements, circular attenuation compensation, depolarization of the polarizing elements, retardances of phase modulators, and the like. The self-calibrating ellipsometer and the combined system may be used for measuring sample characteristics such as film thickness and depolarization of radiation caused by the sample. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
A Mueller ellipsometer of the type having a first rotating element on an incident beam side of a sample and a second rotating element on a reflected beam side of the sample and a detector having an integration time, having a controller for selectively and separately adjusting (1) a first angular frequency of the first rotating element and (2) a second angular frequency of the second rotating element.
Abstract:
A polarized sample beam (12) of broadband radiation is focused onto the surface of a sample (3) and the radiation modified by the sample is collected by means of a mirror system (16) in different planes of incidence. The sample beam focused to the sample has a multitude of polarization states. The modified radiation is analyzed with respect to a polarization plane to provide a polarimetric spectrum. Preferably the polarization of the sample beam is altered only by the focusing and the sample, and the analyzing is done with respect to a fixed polarization plane. In the preferred embodiment, the focusing of the sample beam and the collection of the modified radiation are repeated employing two different apertures (30) to detect the presence or absence of a birefringence axis in the sample. In another preferred embodiment, the above-described technique may be combined with ellipsometry for determining the thickness and refractive indices of thin films.
Abstract:
Two phase modulators or polarizing elements are employed to modulate the polarization of an interrogating radiation beam before and after the beam has been modified by a sample to be measured. Radiation so modulated and modified by the sample is detected and up to 25 harmonics may be derived from the detected signal. The up to 25 harmonics may be used to derive ellipsometric and system parameters, such as parameters related to the angles of fixed polarizing elements, circular deattenuation, depolarization of the polarizing elements and retardances of phase modulators. A portion of the radiation may be diverted for detecting sample tilt or a change in sample height. A cylindrical objective may be used for focusing the beam onto the sample to illuminate a circular spot on the sample. The above-described self-calibrating ellipsometer may be combined with another optical measurement instrument such as a polarimeter, a spectroreflectometer or another ellipsometer to improve the accuracy of measurement and/or to provide calibration standards for the optical measurement instrument. The self-calibrating ellipsometer as well as the combined system may be used for measuring sample characteristics such as film thickness and depolarization of radiation caused by the sample.
Abstract:
A spectroscopic instrument for conducting multi-wavelength, multi-azimuth, multi-angle-of-incidence readings on a substrate, the instrument having a broadband light source for producing an illumination beam, an objective for directing the illumination onto the substrate at multiple azimuth angles and multiple angles-of-incidence simultaneously, thereby producing a reflection beam, an aperture plate having an illumination aperture and a plurality of collection apertures formed therein for selectively passing portions of the reflection beam having desired discrete combinations of azimuth angle and angle-of-incident, a detector for receiving the discrete combinations of azimuth angle and angle-of-incident and producing readings, and a processor for interpreting the readings.
Abstract:
Two phase modulators or polarizing elements are employed to modulate the polarization of an interrogating radiation beam before and after the beam has been modified by a sample to be measured. The detected signal may be used to derive ellipsometric and system parameters, such as parameters related to the angle of fixed polarizing elements and retardances of phase modulators. A portion of the radiation may be diverted for detecting sample tilt or a change in sample height. A cylindrical objective may be used for focusing the beam onto the sample to illuminate a circular spot on the sample. The above-described self-calibrating ellipsometer may be combined with another optical measurement instrument such as a polarimeter, a spectroreflectometer or another ellipsometer to improve the accuracy of measurement and/or to provide calibration standards for the optical measurement instrument. The self-calibrating ellipsometer as well as the combined system may be used for measuring sample characteristics such as film thickness and depolarization of radiation caused by the sample.
Abstract:
Thickness of a film in a sample may be detected by directing pump laser pulses to the surface of a sample to generate an acoustic pulse in a sample. The acoustic pulse propagates downwards until it reaches an interface between the bottom of the film and a substrate and is reflected back to the top surface of the film as a first echo. A reflection of the first echo propagates downwards and is again reflected back towards the surface as a second echo. Interferometry is used to measure the lapse of time between the first and second echos from which the thickness of the film may be determined.
Abstract:
Thickness of a film in a sample may be detected by directing pump laser pulses to the surface of a sample to generate an acoustic pulse in a sample. The acoustic pulse propagates downwards until it reaches an interface between the bottom of the film and a substrate and is reflected back to the top surface of the film as a first echo. A reflection of the first echo propagates downwards and is again reflected back towards the surface as a second echo. Interferometry is used to measure the lapse of time between the first and second echos from which the thickness of the film may be determined.
Abstract:
A Mueller ellipsometer of the type having a first rotating element on an incident beam side of a sample and a second rotating element on a reflected beam side of the sample and a detector having an integration time, having a controller for selectively and separately adjusting (1) a first angular frequency of the first rotating element and (2) a second angular frequency of the second rotating element.