Abstract:
Control information may be transmitted for different TTI lengths. Different control information for the different TTIs may be transmitted using control channel resources that are established for communication of control information, such as a physical downlink control channel (PDCCH), for example. Control information for a first TTI may be located in a first set of resources, and control information for a second TTI may be located in a second set of resources. The first set of resources may be located within a first search space that may be searched by a user equipment (UE) to identify the first control information. The second set of resources may be located within a second search space that may be searched by the UE to identify the second control information.
Abstract:
Aspects of the present disclosure provide techniques for uplink (UL) data channel design. An example method is provided for operations which may be performed by a first apparatus. The example method generally comprises determining a number of pilot symbols to transmit for one or more slots of a first subframe based, at least in part, on a coverage enhancement (CE) level, and transmitting at least one uplink data channel having the determined number of pilot symbols in the one or more slots of the first subframe.
Abstract:
The disclosure provides for a method of interference detection using adaptive energy detection in unlicensed spectrum. The method can include a first modem operating according to a first radio access technology (RAT) receiving a message from a network entity operating according to the first RAT. The first modem sends a detected energy level value to a second modem that is using a second RAT, where the detected energy level value is based at least on the measured energy level of the received message. The second modem adjusts an energy detection threshold based on the detected energy level value received from the first modem. In an aspect, the first modem receives messages from a plurality of network entities operating according to the first RAT, where the detected energy level value is determined based on measured energy levels of the plurality of received messages.
Abstract:
Certain aspects relate to methods and apparatus for discovering whether one or more enhanced capabilities are supported by devices (e.g., user equipment (UE), base station (BS), etc.) in a network. The enhanced capabilities may include, for example, the ability to support certain low latency procedures, enhanced component carrier (eCC) capability, and the like. The devices in the network may perform one or more handover-related procedures (e.g., cell selection/reselection, make-before-break handover, etc.) and/or other procedures (e.g., QoS negotiation, etc.) based, at least in part, on support for the one or more enhanced capabilities.
Abstract:
Methods and apparatuses for managing uplink scheduling for one or more user equipment served by a network entity in a wireless communications system are presented. For instance, an example method is presented that includes generating, by the network entity, an uplink bandwidth allocation map, the uplink bandwidth allocation map defining an uplink bandwidth allocation for at least one of the one or more user equipment for at least one of a plurality of uplink transmission window lengths. In addition, the example method includes transmitting the uplink bandwidth allocation map to at least one of the one or more user equipment.
Abstract:
Channel feedback for non-orthogonal multiple access (NOMA) multiple-input multiple-output (MIMO) communication systems may be reported by determining a measurement set of transmission strategies for channel feedback for a non-orthogonal channel. Estimates of channel quality for downlink transmissions to the UE corresponding to respective transmission strategies of the measurement set may then be determined. A channel feedback report may then be sent. The channel feedback report may include indicators of channel quality for a subset of the measurement set of transmission strategies.
Abstract:
Techniques are provided for reference signal transmissions and transmit power ratio determination in non-orthogonal transmissions. A traffic-to-pilot power ratio (TPR) may be determined for a base layer for a non-orthogonal channel and another TPR may be determined for an enhancement layer for the non-orthogonal channel. Reference signal transmissions may be transmitted by a base station at a reference signal transmission power, and a user equipment (UE) may estimate channel quality for the base layer or the enhancement layer based at least in part on an energy level of the received reference signal and one or more of the first TPR or the second TPR. A base station may transmit TPR signaling that may indicate one or more TPR values for one or both of the base layer or enhancement layer.
Abstract:
Techniques are described for wireless communication. A first method includes identifying a configuration of a downlink subframe in a shared radio frequency spectrum band, and generating, based at least in part on the configuration of the downlink subframe, a cell-specific reference signal (CRS) for the downlink subframe. A second method includes dynamically determining a presence of a CRS in a downlink subframe in a shared radio frequency spectrum band, and performing at least one operation during the downlink subframe in response to the dynamic determination.
Abstract:
Reference signal design in wireless communications is disclosed. A base station may select a reference signal density scheme from a set of available density schemes associated with a port count. The reference signal density scheme may also be selected based on the category of the mobile device receiving the reference signal transmissions. The reference signal density scheme may be a higher density reference signal density scheme or a lower density reference signal density scheme, where the higher density reference signal density scheme includes more reference signal resource elements per subframe. The mobile device may determine the reference signal density scheme based on characteristics of a channel. The higher density reference signal density scheme may provide additional channel estimation opportunities for the mobile device. In some cases, the mobile device sends the channel estimated based on the received reference signals to the base station.
Abstract:
In an unlicensed band, different types of interference may be experienced by user equipments (UEs), and a serving evolved Node B (eNB) may not be aware of the interference types affecting a UE. Therefore, aspects presented herein provide UE assisted interference learning, in which the UE detects an interfering signal and reports information such as the interference level and properties of the interfering signal to a serving eNB. Another aspects presented herein provide for an eNB which receives, from one or more UEs, information indicating properties of each of at least one interfering signals experienced by the UEs, such as interference types affecting the UEs. The eNB further uses the information received from the UE, including the wireless technology type to determine the properties of its downlink transmission and the length of the contention window leading up to its downlink transmission.