PACKAGE DEVICE FOR MICROELECTROMECHANICAL INERTIAL SENSOR
    91.
    发明申请
    PACKAGE DEVICE FOR MICROELECTROMECHANICAL INERTIAL SENSOR 审中-公开
    微电子实时传感器的封装装置

    公开(公告)号:US20150048463A1

    公开(公告)日:2015-02-19

    申请号:US13968830

    申请日:2013-08-16

    Inventor: CHIEN-WEI CHIANG

    Abstract: A package device for a microelectromechanical inertial sensor comprises a ceramic substrate having an upper accommodation space and a lower accommodation and having a plurality of interconnect metal lines thereinside; a microelectromechanical system (MEMS) chip mounted inside the upper accommodation of the ceramic substrate and electrically connected with the interconnect metal lines; a top cover arranged on the ceramic substrate and sealing the upper accommodation space; and an integrated circuit (IC) chip mounted inside the lower accommodation space and electrically connected with the interconnect metal lines. The present invention can improve the reliability of components, increase the yield and decrease the fabrication cost.

    Abstract translation: 用于微机电惯性传感器的封装装置包括具有上部容置空间和下部容置并且具有多个位于其内部的互连金属线的陶瓷衬底; 微机电系统(MEMS)芯片,其安装在陶瓷基板的上部容置部分内并与互连金属线路电连接; 顶盖,布置在陶瓷基板上并密封上容纳空间; 以及集成电路(IC)芯片,其安装在下容纳空间内并与互连金属线电连接。 本发明可以提高部件的可靠性,提高产量并降低制造成本。

    ENCAPSULATION STRUCTURE INCLUDING A MECHANICALLY REINFORCED CAP AND WITH A GETTER EFFECT
    92.
    发明申请
    ENCAPSULATION STRUCTURE INCLUDING A MECHANICALLY REINFORCED CAP AND WITH A GETTER EFFECT 有权
    包括机械加固盖和盖子效应的包封结构

    公开(公告)号:US20150028433A1

    公开(公告)日:2015-01-29

    申请号:US14331285

    申请日:2014-07-15

    Abstract: A structure (100) for encapsulating at least one microdevice (104) produced on and/or in a substrate (102) and positioned in at least one cavity (110) formed between the substrate and a cap (106) rigidly attached to the substrate, in which the cap includes at least: one layer (112) of a first material, one face of which (114) forms an inner wall of the cavity, and mechanical reinforcement portions (116) rigidly attached at least to the said face of the layer of the first material, partly covering the said face of the layer of the first material, and having gas absorption and/or adsorption properties, and in which the Young's modulus of a second material of the mechanical reinforcement portions is higher than that of the first material.

    Abstract translation: 一种用于封装至少一个在基板(102)上和/或基板(102)上产生并位于至少一个形成在基板和刚性地附接到基板的盖(106)之间的空腔(110)中的微器件(104)的结构(100) ,其中所述盖至少包括:第一材料的一层(112),其一个面(114)形成所述空腔的内壁,以及至少刚性地附接到所述表面的所述表面的机械加强部分(116) 所述第一材料层,部分覆盖所述第一材料层的所述表面,并且具有气体吸收和/或吸附性能,并且其中所述机械增强部分的第二材料的杨氏模量高于 第一种材料。

    TRANSPORTATION DEVICE HAVING A MONOLITHICALLY INTEGRATED MULTI-SENSOR DEVICE ON A SEMICONDUCTOR SUBSTRATE AND METHOD THEREFOR
    93.
    发明申请
    TRANSPORTATION DEVICE HAVING A MONOLITHICALLY INTEGRATED MULTI-SENSOR DEVICE ON A SEMICONDUCTOR SUBSTRATE AND METHOD THEREFOR 有权
    在半导体基板上具有单一集成多传感器器件的传输器件及其方法

    公开(公告)号:US20140264659A1

    公开(公告)日:2014-09-18

    申请号:US14207443

    申请日:2014-03-12

    Abstract: A transportation device is provided having multiple sensors configured to detect and measure different parameters of interest. The transportation device includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The transportation device couples a first parameter to be measured directly to the direct sensor. Conversely, the transportation device can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the transportation device by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device. This supports integrating multiple sensors such as a microphone, an accelerometer, and a temperature sensor to reduce cost, complexity, simplify assembly, while increasing performance.

    Abstract translation: 提供了具有多个传感器的运输装置,其被配置为检测和测量不同的感兴趣的参数。 运输装置包括至少一个单片集成多传感器(MIMS)装置。 MIMS器件包括形成在公共半导体衬底上的至少两种不同类型的传感器。 例如,MIMS装置可以包括间接传感器和直接传感器。 运输装置将待测量的第一参数直接耦合到直接传感器。 相反,运输装置可间接地将待测量的第二参数耦合到间接传感器。 可以通过将传感器堆叠到MIMS装置或耦合到MIMS装置的另一基板上而将其它传感器添加到运输装置。 这支持集成多个传感器,如麦克风,加速度计和温度传感器,以降低成本,复杂性,简化组装,同时提高性能。

    Thin micromachined structures
    95.
    发明授权
    Thin micromachined structures 有权
    薄的微加工结构

    公开(公告)号:US06808956B2

    公开(公告)日:2004-10-26

    申请号:US09749171

    申请日:2000-12-27

    CPC classification number: B81C1/0015 B81B2201/0228 B81C2201/019

    Abstract: Methods for making thin silicon layers suspended over recesses in glass wafers or substrates are disclosed. The suspended silicon wafers can be thin and flat, and can be made using methods not requiring heavy doping or wet chemical etching of the silicon. Devices suitable for production using methods according to the invention include tuning forks, combs, beams, inertial devices, and gyroscopes. One embodiment of the present invention includes providing a thin silicon wafer, and a glass wafer or substrate. Recesses are formed in one surface of the glass wafer, and electrodes are formed in the recesses. The silicon wafer is then bonded to the glass wafer over the recesses. The silicon wafer is them etched to impart the desired suspended or silicon wafer structure. In another embodiment of the present invention, the silicon wafer has a patterned metal layer. The silicon wafer is bonded to the glass wafer, with the patterned metal layer positioned adjacent the recesses in the glass wafer. The silicon wafer is selectively etched down to the metal layer, which serves as an etch stop. The metalized layer can provide sharper feature definition at the silicon-metalization layer interface, and may also serve to seal gasses within the recessed cavities of the glass wafer during the silicon etching process. The metal layer can then be subsequently removed.

    Abstract translation: 公开了将薄硅层悬浮在玻璃晶片或衬底中的凹槽上的方法。 悬浮的硅晶片可以是薄且平坦的,并且可以使用不需要对硅进行重掺杂或湿化学蚀刻的方法制成。 适用于根据本发明的方法生产的装置包括调谐叉,梳,梁,惯性装置和陀螺仪。 本发明的一个实施例包括提供薄硅晶片和玻璃晶片或基板。 凹部形成在玻璃晶片的一个表面上,电极形成在凹部中。 然后将硅晶片在凹槽上结合到玻璃晶片。 硅晶片被刻蚀以赋予所需的悬浮或硅晶片结构。 在本发明的另一个实施例中,硅晶片具有图案化的金属层。 硅晶片结合到玻璃晶片,图案化金属层位于玻璃晶片中的凹槽附近。 硅晶片被选择性地向下蚀刻到用作蚀刻停止层的金属层。 金属化层可以在硅 - 金属化层界面处提供更清晰的特征定义,并且还可以用于在硅蚀刻工艺期间将气体密封在玻璃晶片的凹陷空腔内。 然后可以随后去除金属层。

    Thin Micromachined Structures
    96.
    发明申请
    Thin Micromachined Structures 有权
    薄微加工结构

    公开(公告)号:US20020081765A1

    公开(公告)日:2002-06-27

    申请号:US09749171

    申请日:2000-12-27

    CPC classification number: B81C1/0015 B81B2201/0228 B81C2201/019

    Abstract: Methods for making thin silicon layers suspended over recesses in glass wafers or substrates are disclosed. The suspended silicon wafers can be thin and flat, and can be made using methods not requiring heavy doping or wet chemical etching of the silicon. Devices suitable for production using methods according to the invention include tuning forks, combs, beams, inertial devices, and gyroscopes. One embodiment of the present invention includes providing a thin silicon wafer, and a glass wafer or substrate. Recesses are formed in one surface of the glass wafer, and electrodes are formed in the recesses. The silicon wafer is then bonded to the glass wafer over the recesses. The silicon wafer is them etched to impart the desired suspended or silicon wafer structure. In another embodiment of the present invention, the silicon wafer has a patterned metal layer. The silicon wafer is bonded to the glass wafer, with the patterned metal layer positioned adjacent the recesses in the glass wafer. The silicon wafer is selectively etched down to the metal layer, which serves as an etch stop. The metalized layer can provide sharper feature definition at the silicon-metalization layer interface, and may also serve to seal gasses within the recessed cavities of the glass wafer during the silicon etching process. The metal layer can then be subsequently removed.

    Abstract translation: 公开了将薄硅层悬浮在玻璃晶片或衬底中的凹槽上的方法。 悬浮的硅晶片可以是薄且平坦的,并且可以使用不需要对硅进行重掺杂或湿化学蚀刻的方法制成。 适用于根据本发明的方法生产的装置包括调谐叉,梳,梁,惯性装置和陀螺仪。 本发明的一个实施例包括提供薄硅晶片和玻璃晶片或基板。 凹部形成在玻璃晶片的一个表面上,电极形成在凹部中。 然后将硅晶片在凹槽上结合到玻璃晶片。 硅晶片被刻蚀以赋予所需的悬浮或硅晶片结构。 在本发明的另一个实施例中,硅晶片具有图案化的金属层。 硅晶片结合到玻璃晶片,图案化金属层位于玻璃晶片中的凹槽附近。 硅晶片被选择性地向下蚀刻到用作蚀刻停止层的金属层。 金属化层可以在硅 - 金属化层界面处提供更清晰的特征定义,并且还可以用于在硅蚀刻工艺期间将气体密封在玻璃晶片的凹陷空腔内。 然后可以随后去除金属层。

    MEMS構造体
    97.
    发明申请
    MEMS構造体 审中-公开
    MEMS结构

    公开(公告)号:WO2015186772A1

    公开(公告)日:2015-12-10

    申请号:PCT/JP2015/066146

    申请日:2015-06-04

    Abstract:  MEMS構造体(1)は、基板(2)上に形成されたアンカー(22)等によって、基板(2)表面に固設されたZ方向検出電極(10)の上方に、本体部(20)、可動部(30)を配置して構成されている。可動部(30)における可動錘(31)は、Y方向へ弾性変形可能な各弾性支持部(33)によって、中間フレーム部(32)に対して接続されているので、可動部(30)は、本体部(20)に対して、Y方向へ相対的に変位し得る。又、可動部(30)における中間フレーム部(32)は、X方向側の一端部に配設されたトーションバー(34)の捩れ変形によって、本体部(20)に対して揺動可能に支持されているので、可動部(30)は、可動錘(31)及び中間フレーム部(32)を一体的に、Z方向に変位する。

    Abstract translation: 该MEMS结构(1)由主体部分(20)和可移动部分(30)构成,其通过形成在基板(2)上的锚固件(22)等设置在z方向检测器 固定在基板(2)的表面上的电极(10)。 由于可动部30的可移动重物31通过可沿y方向弹性变形的弹性支撑部33与中间框架部32连接,所以可动部30可以 相对于主体部分(20)在Y方向相对移位。 此外,由于可动部(30)的中间框架部(32)被支撑成能够通过扭转杆(34)的扭转而相对于主体部(20)摆动, 一端在x方向侧,可动部(30)与z方向一体地与可移动重物(31)和中间框架部(32)一体地变形。

    DISTRIBUTED SENSOR SYSTEM
    98.
    发明申请
    DISTRIBUTED SENSOR SYSTEM 审中-公开
    分布式传感器系统

    公开(公告)号:WO2014151905A1

    公开(公告)日:2014-09-25

    申请号:PCT/US2014/026646

    申请日:2014-03-13

    Applicant: GOGOI, Bishnu

    Inventor: GOGOI, Bishnu

    Abstract: A distributed sensor system is disclosed that provides spatial and temporal data in an operating environment. The distributed sensor nodes can be coupled together to form a distributed sensor system. For example, a distributed sensor system comprises a collection of Sensor Nodes (SN) that are physically coupled and are able to collect data about the environment in a distributed manner. An example of a distributed sensor system comprises a first sensor node and a second sensor node. Each sensor node has a plurality of sensors or a MIMS device. Each sensor node can also include electronic circuitry or a power source. A joint region is coupled between a first flexible interconnect region and a second flexible interconnect region. The first sensor node is coupled to the first flexible interconnect region. Similarly, the second sensor node is coupled to the second flexible interconnect region.

    Abstract translation: 公开了一种在操作环境中提供空间和时间数据的分布式传感器系统。 分布式传感器节点可以耦合在一起以形成分布式传感器系统。 例如,分布式传感器系统包括物理耦合并且能够以分布式方式收集关于环境的数据的传感器节点(SN)的集合。 分布式传感器系统的示例包括第一传感器节点和第二传感器节点。 每个传感器节点具有多个传感器或MIMS装置。 每个传感器节点还可以包括电子电路或电源。 联接区域耦合在第一柔性互连区域和第二柔性互连区域之间。 第一传感器节点耦合到第一柔性互连区域。 类似地,第二传感器节点耦合到第二柔性互连区域。

    THIN SILICON MICROMACHINED STRUCTURES
    99.
    发明申请
    THIN SILICON MICROMACHINED STRUCTURES 审中-公开
    薄硅微孔结构

    公开(公告)号:WO02051743A3

    公开(公告)日:2003-05-22

    申请号:PCT/US0150464

    申请日:2001-12-20

    CPC classification number: B81C1/0015 B81B2201/0228 B81C2201/019

    Abstract: Methods for making thin silicon layers 20 suspended over recesses 30 in glass wafers or substrates 22 are disclosed. One embodiment of the present invention includes providing a thin silicon wafer 20, and a glass wafer or substrate 22. Recesses 30 are formed in one surface 24 of the glass wafer 22, and electrodes 38 are formed in the recesses 30. The silicon wafer 20 is then bonded to the glass wafer 22 over the recesses 30. The silicon wafer 20 is then etched to impart the desired suspended or silicon wafer structure. In another embodiment of the present invention, the silicon wafer 120 has a patterned metal layer 129. The silicon wafer 120 is bonded to the glass wafer 22, with the patterned metal layer 129 positioned adjacent the recesses 30 in the glass wafer 22. The silicon wafer 120 positioned adjacent the recesses 30 in the glass wafer 22. The silicon wafer 120 is selectively etched down to the metal layer 129. The metalized layer 129 may serve to seal gasses within the recessed cavities 30 of the glass wafer 22 during the silicon etching process. The metal layer 129 can then be subsequently removed.

    Abstract translation: 公开了制造悬浮在玻璃晶片或基板22中的凹槽30上的薄硅层20的方法。 本发明的一个实施例包括提供薄硅晶片20和玻璃晶片或基板22.凹部30形成在玻璃晶片22的一个表面24中,并且电极38形成在凹部30中。硅晶片20 然后在凹槽30上结合到玻璃晶片22.然后蚀刻硅晶片20以赋予所需的悬浮或硅晶片结构。 在本发明的另一个实施例中,硅晶片120具有图案化的金属层129.硅晶片120结合到玻璃晶片22上,图案化的金属层129邻近玻璃晶片22中的凹槽30定位。硅 晶片120定位成邻近玻璃晶片22中的凹部30.硅晶片120被选择性地向下蚀刻到金属层129.金属化层129可用于在硅蚀刻期间将气体密封在玻璃晶片22的凹腔30内。 处理。 然后可以随后去除金属层129。

    SOI/GLASS PROCESS FOR FORMING THIN SILICON MICROMACHINED STRUCTURES
    100.
    发明申请
    SOI/GLASS PROCESS FOR FORMING THIN SILICON MICROMACHINED STRUCTURES 审中-公开
    用于形成薄硅微结构的SOI /玻璃工艺

    公开(公告)号:WO02057180A3

    公开(公告)日:2003-03-13

    申请号:PCT/US0150089

    申请日:2001-12-20

    Abstract: Methods for making thin silicon layers suspended over recesses (30) in glass wafers (22). One method includes providing a thin silicon-on-insulator (SOI) wafer (21), and a glass wafer (22). The SOI wafer (21) can include a silicon oxide layer (50) disposed between a first undoped or substantially undoped silicon layer (20) and a second silicon layer (60). Recesses (30) can be formed in the glass wafer surface (24) and electrodes (38) may be formed on the glass wafer surface (24). The first silicon layer (20) of the SOI wafer (21) is then bonded to the glass wafer surface (24) having the recesses (30), and the second silicon layer (60) is subsequently removed using the silicon oxide layer (50) as an etch stop. Next, the silicon oxide layer (50) is removed. The first silicon layer (20) can then be etched to form the desired structure. In another illustrative embodiment, the first silicon layer (120) has a patterned metal layer (129) positioned adjacent the recesses (30) in the glass wafer (22). The, the second silicon layer (60) is removed using the silicon oxide layer (50) as an etch stop, and the silicon oxide layer (50) is subsequently removed. The first silicon layer (120) is then etched using the patterned metal layer (129) as an etch stop. The patterned metal layer (120) is then removed.

    Abstract translation: 使薄硅层悬浮在玻璃晶片(22)中的凹槽(30)上的方法。 一种方法包括提供薄的绝缘体上硅(SOI)晶片(21)和玻璃晶片(22)。 SOI晶片(21)可以包括设置在第一未掺杂或基本未掺杂的硅层(20)和第二硅层(60)之间的氧化硅层(50)。 可以在玻璃晶片表面(24)中形成凹部(30),并且可以在玻璃晶片表面(24)上形成电极(38)。 然后将SOI晶片(21)的第一硅层(20)接合到具有凹陷(30)的玻璃晶片表面(24),并且随后使用氧化硅层(50)去除第二硅层(60) )作为蚀刻停止。 接下来,去除氧化硅层(50)。 然后可以蚀刻第一硅层(20)以形成所需的结构。 在另一说明性实施例中,第一硅层(120)具有与玻璃晶片(22)中的凹部(30)相邻的图案化金属层(129)。 使用氧化硅层(50)作为蚀刻停止层去除第二硅层(60),随后除去氧化硅层(50)。 然后使用图案化金属层(129)作为蚀刻停止层蚀刻第一硅层(120)。 然后去除图案化的金属层(120)。

Patent Agency Ranking