Abstract:
A method includes (1) a thermal diffusion process for using an alkali metal salt raw material having an average particle size of 1 mm or less in diameter, supplying a vapor of the alkali metal salt produced by heating the alkali metal salt raw material together with a carrier gas to the inside of a silica-based glass pipe from one end side of the glass pipe, and heating the glass pipe using a heat source which relatively moves in a longitudinal direction of the glass pipe to cause an oxidation reaction of an alkali metal and thermally diffuse the alkali metal into an inner side of the glass pipe, (2) a collapsing process for collapsing the glass pipe after the thermal diffusion process to prepare a core rod; and (3) a cladding portion addition process for adding a cladding portion around the core rod prepared in the collapsing process.
Abstract:
A method includes (1) a thermal diffusion process for using an alkali metal salt raw material having an average particle size of 1 mm or less in diameter, supplying a vapor of the alkali metal salt produced by heating the alkali metal salt raw material together with a carrier gas to the inside of a silica-based glass pipe from one end side of the glass pipe, and heating the glass pipe using a heat source which relatively moves in a longitudinal direction of the glass pipe to cause an oxidation reaction of an alkali metal and thermally diffuse the alkali metal into an inner side of the glass pipe, (2) a collapsing process for collapsing the glass pipe after the thermal diffusion process to prepare a core rod; and (3) a cladding portion addition process for adding a cladding portion around the core rod prepared in the collapsing process.
Abstract:
Manufacturing an optical fiber by using an outside vapor deposition technique for making a substrate, applying one or more layers to the substrate using a radial pressing technique to form a soot blank, sintering the soot blank in the presence of a gaseous refractive index-modifying dopant, and drawing the sintered soot blank, provides a more efficient and cost effective process for generating complex refractive index profiles.
Abstract:
The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
Abstract:
According to some embodiments, the optical fiber comprises: (i) a core having a first index of refraction n1; (ii) a cladding surrounding the core and having a second index of refraction n2, such that n1>n2, wherein cladding has at two sets of stress rods extending longitudinally through the length of the optical fiber, wherein the two sets of stress rods have CTE coefficients and/or softening points different from one another and different from that of cladding.
Abstract:
A method is provided for forming an optical fiber amplifier. The method comprises providing a composite preform having a gain material core that includes one or more acoustic velocity varying dopants to provide a longitudinally varying acoustic velocity profile along the gain material core to suppress Stimulated Brillouin Scattering (SBS) effects by raising the SBS threshold and drawing the composite preform to form the optical fiber amplifier.
Abstract:
A method of manufacturing an optical fiber preform includes preparing from a first deposition tube a first rod that includes a central core and preparing from a second deposition tube a second rod that includes a buried trench. The method further includes fitting the second rod as a sleeve over the first rod. This disclosed method facilitates the manufacture of large-capacity fiber preforms using deposition benches having small and/or medium deposition capacity.
Abstract:
A single mode fiber having a core, an inner cladding, a depressed cladding, and an outer cladding composed of pure silica glass. The core is surrounded in sequence with the inner cladding and the depressed cladding. The core has silica glass doped with germanium and fluorine, with a diameter (a) of 8.0-8.8 μm, a relative refractive index difference (Δ1) of 0.35-0.38%, and the contribution of fluoride (ΔF) is −0.09±0.02%. The inner cladding has silica glass doped with germanium and fluorine, with a diameter (b) of 18-21 μm and a relative refractive index difference (Δ2) of 0±0.02%. The depressed cladding has silica glass doped with fluorine, with a diameter (c) of 26-36 μm and a relative refractive index difference (Δ32) at the external interface thereof is between −0.22 and −0.35%, and a relative refractive index difference (Δ31) at the internal interface thereof is between −0.20 and −0.35%, and Δ32≦Δ31. The fiber has a good bending resistance, good mechanical properties, and extended service lifetime, and prevents the additional stresses generated by bending from passing on to the core, thereby reducing attenuation.
Abstract:
In an optical component having a cylindrical core of quartz glass and a coaxial jacket of quartz glass containing a dopant which decreases the index of refraction, the jacket glass contains a viscosity-increasing stiffening agent to reduce tensile strength on the core at drawing temperature of 1000.degree. to 2500.degree. C. or a relaxation agent for lowering the viscosity of the quartz glass in a concentration which is lower than that present in the core glass.
Abstract:
Disclosed is a method of making a polarization retaining single-mode optical fiber. There is initially formed a draw blank having diametrically opposed longitudinal apertures in the cladding glass parallel to the core glass region. The draw blank is drawn into a fiber under such conditions that the apertures close as the fiber is being drawn. The flow of surrounding glass, including the core glass region, toward the collapsing apertures, causes the core to assume an elliptical shape. The apertures are of such cross-sectional area and spacing from the core that the core develops the desired aspect ratio.