Abstract:
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Abbildung der Innenkontur eines Rohres mit folgenden Schritten: - Einstrahlung von Licht einer ersten Polarisationsrichtung auf ein erstes Rohrende in Längsrichtung des Rohres, - Reflexion des Lichtes hinter einem zweiten Rohrende, wobei das durch das Rohr aufgrund der Reflexion zurücklaufende Licht eine zweite Polarisationsrichtung aufweist, die orthogonal zur ersten Polarisationsrichtung ist, - Filterung des zurücklaufenden Lichts mit einem Polarisationsfilter zum Durchlass nur des zurücklaufenden Lichts.
Abstract:
The present invention pertains to a surface plasmon enhanced fluorescence analysis device and a surface plasmon enhanced fluorescence measurement method which use GC-SPFS and make it possible to detect a substance to be detected with high sensitivity. This surface plasmon enhanced fluorescence measurement device has: a light source for irradiating the diffraction grating of a chip with excited light; a polarizer for removing linearly polarized light from fluorescent light emitted from a fluorescent substance on the diffraction grating; and a photodetector for detecting the linearly polarized light removed by the polarizer.
Abstract:
A distortion distribution of an entire vitreous silica crucible is measured in a non-destructive way. A distortion-measuring apparatus comprises: a light source 11 which irradiates the vitreous silica crucible 1 from outside; a first polarizer 12 and a first quarter-wave plate 13 disposed between the light source 11 and an outer surface of the vitreous silica crucible 1 wall; a camera 14 disposed inside of the vitreous silica crucible 1; a camera control mechanism 15 configured to control a photographing direction of the camera 14; a second polarizer 16 and a second quarter-wave plate 17 disposed between the camera 14 and an inner surface of the vitreous silica crucible 1's wall. An optical axis of the second quarter-wave plate 17 inclines 90 degrees with respect to the first quarter-wave plate 13. The camera 14 conducts photographing of a light which is emitted from the light source 11 and passes through the first polarizer 12, the first quarter-wave plate 13, the wall of the vitreous silica crucible 1, the second quarter-wave plate 17, and the second polarizer 16.
Abstract:
A concentration calculation system of an optically active substance, includes: a calculation unit configured to: acquire an amount of change in a polarization state by allowing light having different wavelengths to pass through a cornea and an aqueous humor; and calculate a concentration of a specific optically active substance contained in the aqueous humor by a least squares method based on a theoretical formula which includes a matrix representing a polarization property of the cornea and a matrix representing a polarization property of the aqueous humor and represents a wavelength dependence of the amount of the change, wherein the matrix representing the polarization property of the aqueous humor is represented by a function of an expression representing the wavelength dependence of an optical rotation degree of the specific substance and the expression includes a concentration value of the specific substance as an unknown quantity or a temporal known quantity.
Abstract:
The invention relates to a device for analyzing and/or generating a polarization state of a measurement point of a target object; the device includes: a polarizer suitable for selecting, in an incident light wave, a light beam which is linearly polarized in a predefined direction; a first birefringent element suitable for having said light beam pass therethrough; a second birefringent element identical to the first element and suitable for having said light beam pass therethrough, said light beam then being directly or indirectly directed toward said object in order to be reflected in the form of a reflected beam. In addition, the optical assembly consisting of one or more optical elements is located in an optical path between the first element and the second element, the optical assembly consisting of: an odd number of mirrors, or, an odd number of half-wave plates, or, an odd number of a mix of mirrors and half-wave plates.
Abstract:
Disclosed herein is a system (10) for measuring light induced transmission or reflection changes, in particular due to stimulated Raman emission. The system comprises a first light source (12) for generating a first light signal having a first wavelength, a second light source (14) for generating a second light signal having a second wavelength, an optical assembly (16) for superposing said first and second light signals at a sample location (18), and a detection means (24) for detecting a transmitted or reflected light signal, in particular a stimulated Raman signal caused by a Raman-active medium when located at said sample location. Here in at least one of the first and second light sources (12, 14) is one or both of actively controllable to emit a time controlled light pattern or operated substantially in CW mode and provided with an extra cavity modulation means (64) for generating a time controlled light pattern. The detection means (24) is capable of recording said transmitted or reflected light signal, in particular stimulated Raman signal, as a function of time.
Abstract:
A detection device (100) detects an analyte that may be contained in a specimen. The detection device (100) includes a plurality of gold nanoparticles, an optical trapping light source (101), an illumination light source (102), an objective lens (103), an image pick-up device (108), and a computation unit (106). The plurality of gold nanoparticles are each modified with a probe DNA allowing the analyte to specifically adhere thereto. The optical trapping light source (101) emits polarized light for assembling the plurality of gold nanoparticles together. The objective lens (103) focuses and introduces the polarized light into a liquid containing a specimen and the plurality of gold nanoparticles. The image pick-up device (108) receives light from the liquid. The computation unit (106) detects an analyte based on a signal received from the image pick-up device (108).
Abstract:
A measuring apparatus is provided for inspecting a seal of an item. The measuring apparatus includes a radiation source for providing radiation for illuminating the seal of the item, a detector for receiving radiation from the item for generating a corresponding detected signal, and a processing arrangement for processing the detected signal to generate an output signal indicative of a state of the seal. The radiation source is arranged to focus the radiation into a plurality of focal points at the seal of the item, wherein the focal points are mutually spatially spaced apart. Moreover, the detector is arranged to image one or more of the focal points and to be selectively sensitive to an intensity of radiation received from the one or more focal points to generate a detected signal.