Abstract:
A system and method for a micro-electrical-mechanical system (MEMS) device including a substrate and a free-standing and suspended electroplated metal MEMS structure formed on the substrate. The free-standing and suspended electroplated metal MEMS structure includes a metal mechanical element mechanically coupled to the substrate and a seed layer mechanically coupled to and in electrical communication with the mechanical element, the seed layer comprising at least one of a refractory metal and a refractory metal alloy, wherein a thickness of the mechanical element is substantially greater than a thickness of the seed layer such that the mechanical and electrical properties of the free-standing and suspended electroplated metal MEMS structure are defined by the material properties of the mechanical element.
Abstract:
A MEMS switch device including: a substrate layer; an insulating layer formed over the substrate layer; and a MEMS switch module having a plurality of contacts formed on the surface of the insulating layer, wherein the insulating layer includes a number of conductive pathways formed within the insulating layer, the conductive pathways being configured to interconnect selected contacts of the MEMS switch module.
Abstract:
Embodiments of the present invention provide a capacitive switch, an apparatus for transceiving a signal, and a method for manufacturing the capacitive switch. The capacitive switch includes: a first conductive cantilever, a second conductive cantilever, a substrate, and a coplanar waveguide arranged on the substrate, where the coplanar waveguide includes a first conductor configured to transmit an electrical signal and a second conductor and a third conductor that are arranged as ground wires on two sides of the first conductor; an insulation medium layer is arranged on the first conductor, and a conducting layer is arranged on the insulation medium layer; the first conductive cantilever is connected to the second conductor by using a first fixed end, and the second conductive cantilever is connected to the third conductor by using a second fixed end; and when a direct-current signal is transmitted on the capacitive switch, a first free end of the first conductive cantilever and a second free end of the second conductive cantilever contact the conducting layer. In the capacitive switch provided in this embodiment, a stress generated by a metal film bridge of the capacitive switch is released by using a cantilever separate structure, thereby ensuring transmission quality of a signal.
Abstract:
The present invention generally relates to a MEMS device in which silicon residues from the adhesion promoter material are reduced or even eliminated from the cavity floor. The adhesion promoter is typically used to adhere sacrificial material to material above the substrate. The adhesion promoter is the removed along with then sacrificial material. However, the adhesion promoter leaves silicon based residues within the cavity upon removal. The inventors have discovered that the adhesion promoter can be removed from the cavity area prior to depositing the sacrificial material. The adhesion promoter which remains over the remainder of the substrate is sufficient to adhere the sacrificial material to the substrate without fear of the sacrificial material delaminating. Because no adhesion promoter is used in the cavity area of the device, no silicon residues will be present within the cavity after the switching element of the MEMS device is freed.
Abstract:
Le circuit intégré comporte un substrat de support (1) ayant des première et seconde faces principales (2a, 2b) opposées. Une cavité traverse le substrat de support (1) et relie les première et seconde faces principales (2a, 2b). Le circuit intégré comporte un dispositif à élément mobile (5) dont l'élément mobile (6) et un couple d'électrodes (7) associées sont inclus dans une cavité. Un noeud d'ancrage de l'élément mobile (6) est localisé au niveau de la première face principale (2a). Le circuit intégré comprend une première puce (3) élémentaire disposée au niveau de la première face principale (2a) et connectée électriquement au dispositif à élément mobile (5).
Abstract:
The present invention provides a bi-directional microelectromechanical element, a microelectromechanical switch including the bi-directional element, and a method to reduce mechanical creep in the bi-directional element. In one embodiment, the bi-directional microelectromechanical element includes a cold beam having a free end and a first end connected to a cold beam anchor. The cold beam anchor is attached to a substrate. A first beam pair is coupled to the cold beam by a free end tether and is configured to elongate when heated thereby to a greater temperature than a temperature of the cold beam. A second beam pair is located on an opposing side of the cold beam from the first beam pair and is coupled to the first beam pair and the cold beam by the free end tether. The second beam pair is configured to elongate when heated thereby to the greater temperature.
Abstract:
A first wiring layer (16) is provided on an insulation film (14) on the lower face of an upper substrate (15), a second wiring layer (13) crossing the first wiring layer (16) in a three-dimensional manner is provided on an insulation film (12) on a lower substrate (11), one end of a cantilever (17) is connected to the first wiring layer (16), and the other end of the cantilever (17) is positioned to face the second insulation layer (13) with a space in between. A thermoplastic sheet (19) is placed on the upper substrate (15) so as to cover a through-hole (18), and the thermoplastic sheet (19) is pressed against the cantilever (17) by a heated pin (20) to deform the thermoplastic sheet (19), thereby a switch (10) is closed with the connection of the cantilever (17) to the second wiring layer (13) maintained.
Abstract:
A movable, trilayered microcomponent (108) suspended over a substrate (102) is provided and includes a first electrically conductive layer (116) patterned to define a movable electrode (114). The first metal layer (116) is separated from the substrate (102) by a gap. The microcomponent (108) further includes a dielectric layer formed (112) on the first metal layer (116) and having an end fixed with respect to the substrate (102). Furthermore, the microcomponent (102) includes a second electrically conductive layer (120) formed on the dielectric layer (112) and patterned to define an electrode interconnect (124) for electrically communicating with the movable electrode (114).