Abstract:
According to the invention, the cover (13) of the inventive sensor is made of a first layer (32) (deposition layer) which is transparent to an etching to reaction products and has a hermetically sealed second layer (34) (sealing layer) located thereover. In the method according to the invention, at least the sensor chamber (28) is located in the base wafer (11) is filled with an oxide (30), in particular CVD oxide or porous oxide after a structure (26) has been established. The sensor chamber (28)is covered with a first layer (32) in particular a polysilicon layer which is or has been made transparent to the etching medium and the reaction products (deposition layer). The oxide (30) in the sensor chamber (28) is removed by an etching medium which etches through the deposition layer (32). A second layer (34) (sealing layer) is subsequently applied to the deposition layer (32) which hermetically seals the sensor chamber (28). Said second layer is in particular made of a metal or an insulator.
Abstract:
Es wird ein Drehratensensor mit einem Substrat mit einer Haupterstreckungsebene und mit mindestens einer gegenüber dem Substrat beweglichen ersten Struktur und mit mindestens einer gegenüber dem Substrat und gegenüber der ersten Struktur beweglichen zweiten Struktur vorgeschlagen, wobei der Drehratensensor mindestens eine erste Antriebsstruktur zur Auslenkung der ersten Struktur aus einer Ruhelage der ersten Struktur mit einer Bewegungskomponente im Wesentlichen parallel zu einer ersten Achse umfasst, wobei der Drehratensensor mindestens eine zweite Antriebsstruktur zur Auslenkung der zweiten Struktur aus einer Ruhelage der zweiten Struktur mit einer Bewegungskomponente im Wesentlichen parallel zu der ersten Achse umfasst, wobei die erste Struktur und die zweite Struktur zu einer im Wesentlichen gegenphasigen Schwingung mit Bewegungskomponenten im Wesentlichen parallel zu der ersten Achse anregbar sind, wobei die erste Antriebsstruktur mindestens eine an dem Substrat befestigte erste Feder derart aufweist, dass die erste Feder einem Verschwenken der ersten Struktur im Wesentlichen um eine zu einer senkrecht zu der Haupterstreckungsebene verlaufenden zweiten Achse parallel verlaufende Achse entgegenwirkt, wobei die zweite Antriebsstruktur mindestens eine an dem Substrat befestigte zweite Feder derart aufweist, dass die zweite Feder einem Verschwenken der zweiten Struktur im Wesentlichen um eine zu der zweiten Achse parallel verlaufende weitere Achse entgegenwirkt.
Abstract:
Dispositif micro-électromécanique réalisé dans un substrat semi-conducteur et comprenant au moins une masse principale (1) apte à se déplacer en rotation autour d'un axe de rotation (4) parallèle au plan du substrat sous l'effet d'une première sollicitation mécanique. Le dispositif comprend en outre au moins un ensemble mécanique de détection formé: -d'une masse intermédiaire (51, 52) reliée à une zone d'ancrage (2) via des moyens de liaison (61, 62) mécanique, autorisant un déplacement de la masse intermédiaire (51, 52) parallèlement au plan du substrat sous l'effet d'une deuxième sollicitation mécanique induisant un déplacement du dispositif suivant un axe X parallèle au plan du substrat et perpendiculaire à l'axe de rotation (4);et -d'une jauge de contraintes (71, 72) solidarisée à la masse principale (1) via un premier point d'attache (711, 721)et solidarisée à la masse intermédiaire (51, 52) via un second point d'attache (712, 722), les déplacements du premier point d'attache (711, 721)et du second point d'attache (712, 722) étant de directions sensiblement identiques et d'amplitudes différentes sous l'effet de la première sollicitation, et de directions sensiblement identiques et d'amplitudes sensiblement égales sous l'effet de la deuxième sollicitation.
Abstract:
A semiconductor device includes a substrate, a first dielectric layer located above the substrate, a moving-gate transducer, and a proof mass. The moving-gate transducer is at least partially formed within the substrate and is at least partially formed within the first dielectric layer. The proof mass includes a portion of the first dielectric layer and a portion of a silicon layer. The silicon layer is located above the first dielectric layer.
Abstract:
According to the invention, the cover (13) of the inventive sensor is made of a first layer (32) (deposition layer) which is transparent to an etching to reaction products and has a hermetically sealed second layer (34) (sealing layer) located thereover. In the method according to the invention, at least the sensor chamber (28) is located in the base wafer (11) is filled with an oxide (30), in particular CVD oxide or porous oxide after a structure (26) has been established. The sensor chamber (28)is covered with a first layer (32) in particular a polysilicon layer which is or has been made transparent to the etching medium and the reaction products (deposition layer). The oxide (30) in the sensor chamber (28) is removed by an etching medium which etches through the deposition layer (32). A second layer (34) (sealing layer) is subsequently applied to the deposition layer (32) which hermetically seals the sensor chamber (28). Said second layer is in particular made of a metal or an insulator.
Abstract:
PURPOSE: An INS(Inertial Navigation System) module using an along MEMS(Micro Electro Mechanical System) sensor and a driving method thereof are provided to measure acceleration and angular velocity by using a plurality of MEMS sensors and to respectively determine acceleration information and angular velocity information for positioning by using an average value of the measured acceleration and angular velocity, thereby improving the accuracy of the acceleration information and angular velocity information required for a mobile satellite communication terminal. CONSTITUTION: An INS module using an along MEMS(Micro Electro Mechanical System) sensor comprises a plurality of analog MEMS acceleration sensors(110), a plurality of analog MEMS angular velocity sensors(120), an acceleration calculation unit(140), an angular velocity calculation unit(150), and a DSP(Digital Signal Processing) chip(160). The MEMS acceleration sensor measures the acceleration of a mobile satellite communication terminal. The MEMS angular sensor measures the angular velocity of the mobile satellite communication terminal. The acceleration calculation unit calculates average acceleration by obtaining an average value of the measured acceleration. The acceleration calculation unit calculates average angular velocity by obtaining an average value of the measured angular velocity. The DSP chip processes the calculated average angular velocity and average acceleration as acceleration information and angular information for positioning. [Reference numerals] (110) MEMS acceleration sensor; (120) MEMS angular velocity sensor; (130) Compass sensor; (140) Acceleration calculation unit; (150) Angular velocity calculation unit; (160) DSP chip; (AA) Acceleration, Angular velocity, Speed, 3D posture, Each heading position; (BB) GPS or DGPS data
Abstract:
PURPOSE: An INS(Inertial Navigation System) module using a digital MEMS(Micro Electro Mechanical System) sensor and a method for driving the same are provided to improve the accuracy of angular information and acceleration information required for a mobile satellite communication terminal and to miniaturize the mobile satellite communication terminal for a small MEMS sensor. CONSTITUTION: An INS module using a digital MEMS sensor comprises a plurality of digital MEMS acceleration angular sensors(110), a plurality of digital MEMS angular sensor(120), an acceleration calculation unit(140), an angular velocity calculation unit(150), and a CUP chip(160). The MEMS acceleration sensor measures the acceleration of a mobile satellite communication terminal and the MEMS angular sensor measures the angular velocity of the mobile satellite communication terminal. The acceleration calculation unit obtains an average value of the acceleration, thereby calculating average acceleration. The angular velocity calculation unit obtains an average value of the angular velocity, thereby calculating average angular velocity. The CUP chip determines the calculated average acceleration and angular velocity as acceleration information and angular information for positioning. [Reference numerals] (110) MEMS acceleration sensor; (120) MEMS angular sensor; (130) Compass sensor; (140) Acceleration calculation unit; (150) Angular velocity calculation unit; (160) CPU chip; (AA) Acceleration, Angular velocity, Speed, 3D posture, Each heading position; (BB) GPS or DGPS data
Abstract:
본 발명은 마이크로 관성센서를 제조하는 방법에 관한 것으로, 하부유리기판을 제공하는 단계; 상기 하부유리기판의 표면에 중앙비아홀과 외측비아홀을 관통형성하는 단계; 상기 중앙, 외측비아홀이 형성된 하부유리기판의 상부면에 실리콘기판의 하부면을 본딩하는 단계; 상기 하부유리기판의 하부면측으로 금속박막을 일정두께로 증착하고, 상기 중앙비아홀에 영역에 금속박막을 패터닝하여 전극부를 형성하는 단계; 상기 실리콘기판의 상부면에 사진인쇄된 마스크를 패터닝하여 관성질량체를 형성하는 단계를 포함하여 디바이스웨이퍼를 제조하고; 상부유리기판을 제공하는 단계; 상기 상부유리기판의 하부면에 상부희생층을 식각하는 단계를 포함하여 캡웨이퍼를 제조하며; 상기 상부희생층과 상기 관성질량체가 상하대응되도록 상기 디바이스웨이퍼의 상부면에 상기 캡웨이퍼의 하부면을 본딩하는 단계;를 포함한다. 본 발명에 의하면, 디바이스웨이퍼에 관성질량체를 릴리즈(부유)시키기 위해서 형성되는 희생층의 바닥면으로 관성질량체가 변형되거나 파손되는 것을 방지할 수 있다.