Abstract:
PURPOSE: A method for detecting a defect generated from an infrared thermal observation device is provided to improve performance of the infrared thermal observation device by improving quality of an image generated from an infrared detector. CONSTITUTION: A digital image signal is inputted from a high temperature image and a low temperature image(S400). A gain value and a deviation value with respect to pixels are calculated by using the high temperature image and the low temperature image(S405). Then, a first mean gain value and a mean deviation value are calculated based on the gain value and the deviation value with respect to pixels(S410). Defects of each pixel are determined by using the first mean gain value and the mean deviation value(S420). Defects of each pixel determined if a temperature of the high temperature image is lower than a predetermined value, or a difference between the gain value and the first mean gain value is obviated from a predetermined limit value, or a difference between the deviation value and mean deviation value is obviated from a predetermined limit value.
Abstract:
Improved fallback mechanisms for auto white balancing are presented. In at least one embodiment, white balance correction factors produced by a first white balance technique are blended with white balance correction factors produced by a second white balance technique based on a confidence level in the white balance correction factors produced by the first white balance technique.
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
To enable measurement over a wide dynamic range from weak light quantity to strong light quantity in a light quantity detection device for detecting the light quantity, a detection signal from a photon counting light detector is A/D converted. When the A/D converted detection signal has a preset threshold value or more, the detection signal is transmitted as it is to a number-of-photons calculation circuit in a subsequent stage, and when the detection signal has the threshold value or less, threshold value processing for transmitting a preset reference value to the subsequent stage is performed. In the number-of-photons calculation circuit, the number of photons or the light quantity incident on the photon counting light detector is acquired from the dimension of an acquired detection signal waveform until the light quantity measurement ends.
Abstract:
The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
Abstract:
A method of determining lighting contributions of elements of a lighting component includes obtaining optical data representative of light output of the lighting component. Relative intensity data may be calculated from the optical data, and may indicate intensity differences in the light output of the lighting component as compared to that of a reference component. An optical property of an element of the lighting component is determined based on a comparison of the optical data with that of the reference component, where the reference component includes at least one reference element. Related systems and apparatus are also discussed.
Abstract:
A display device is provided including a photosensor PS that detects the ambient light amount of a display area, a comparator that compares the output of the photosensor PS with a predetermined reference value, and a backlight controller that controls the amount of light supplied to the display area depending on a comparison result by the comparator, a switch SW for controlling application of a precharge potential is connected to a metal that exists near the light-receiving part of the photosensor PS with the intermediary of an insulating film. The embodiment apparently decreases the parasitic capacitance of the detection element to thereby suppress the influence of the parasitic capacitance of the detection element itself at the time of light amount detection.