PROGRAMMABLE STANDARD FOR USE IN AN APPARATUS AND PROCESS FOR THE NONINVASIVE MEASUREMENT OF OPTICALLY ABSORBING COMPOUNDS
    101.
    发明申请
    PROGRAMMABLE STANDARD FOR USE IN AN APPARATUS AND PROCESS FOR THE NONINVASIVE MEASUREMENT OF OPTICALLY ABSORBING COMPOUNDS 审中-公开
    用于非光学测量光学吸收化合物的设备和方法的可编程标准

    公开(公告)号:WO1997028428A1

    公开(公告)日:1997-08-07

    申请号:PCT/US1997000949

    申请日:1997-01-30

    Abstract: The present invention provides a programmable filter for use as a standard in correlation spectrometers. Also provided is the use of the programmable standard in a process for determining the concentration of an optically absorbing compound. Also provided is a method and apparatus for noninvasively determining the concentration of an optically absorbing biological sample which incorporates the programmable standard of the invention. In one embodiment the programmable standard (20) contains a dispersive element (106a) and a transmissive spatial light modulator (108). Because the position of each light beam correlates to its wavelength, spatial filter (108) controllably and selectively attenuates desired wavelengths of the input beam.

    Abstract translation: 本发明提供了一种用于相关光谱仪中的标准的可编程滤波器。 还提供了在用于确定光学吸收化合物的浓度的方法中使用可编程标准品。 还提供了用于非侵入性地确定结合了本发明的可编程标准的光学吸收生物样品的浓度的方法和装置。 在一个实施例中,可编程标准(20)包含色散元件(106a)和透射空间光调制器(108)。 由于每个光束的位置与其波长相关,所以空间滤波器(108)可控地选择性地衰减输入光束的期望波长。

    Device and method for characterizing an ultrashort laser pulse
    102.
    发明公开
    Device and method for characterizing an ultrashort laser pulse 审中-公开
    Vorrichtung und Verfahren zur Charakterisierung eines ultrakurzen Laserpulses

    公开(公告)号:EP3012925A1

    公开(公告)日:2016-04-27

    申请号:EP14190069.6

    申请日:2014-10-23

    Abstract: The invention relates to a device (2) and to a method for characterizing an ultrashort laser pulse. Furthermore, the invention relates to use of a self-contained optical assembly in a device (2) for characterizing an ultrashort laser pulse. The device (2) comprises an imaging optical element (4) configured to image the incident laser pulse (6) in a direction of a straight line (L). A first optical element (10) is configured to apply predetermined varying group delay dispersion on the line focused laser pulse. A non-linear optical element (14) is configured to generate a second harmonic laser pulse (30). A non-linear integral optical member may be realized by placing a thin BBO non-linear crystal (14) between two BK-7 glass wedges (10,12) resulting in a cuboid. An optical grating (22) generates a diffraction of the second harmonic laser pulse, which is imaged (20) on a flat sensor (24). A processing unit (36) determines a best fit for the captured image thereby calculating a frequency spectrum and a spectral phase of the laser pulse.

    Abstract translation: 本发明涉及一种用于表征超短激光脉冲的装置(2)和方法。 此外,本发明涉及在用于表征超短激光脉冲的装置(2)中使用独立的光学组件。 装置(2)包括成像光学元件(4),被配置为沿着直线(L)的方向成像入射激光脉冲(6)。 第一光学元件(10)被配置为对线聚焦激光脉冲施加预定的变化组延迟色散。 非线性光学元件(14)被配置为产生二次谐波激光脉冲(30)。 可以通过将两个BK-7玻璃楔(10,12)之间的薄BBO非线性晶体(14)放置在一个长方体上来实现非线性整体光学部件。 光栅(22)产生在平坦传感器(24)上成像(20)的二次谐波激光脉冲的衍射。 处理单元(36)确定捕获图像的最佳拟合,从而计算激光脉冲的频谱和频谱相位。

    INTEGRATED COMPUTATIONAL ELEMENTS WITH FREQUENCY SELECTIVE SURFACE
    103.
    发明公开
    INTEGRATED COMPUTATIONAL ELEMENTS WITH FREQUENCY SELECTIVE SURFACE 审中-公开
    一体化复合麻醉药物FREQUENZSELEKTIVEROBERFLÄCHE

    公开(公告)号:EP2989442A1

    公开(公告)日:2016-03-02

    申请号:EP13889199.9

    申请日:2013-07-09

    Abstract: Technologies are described for providing optical analysis systems using an integrated computational element that has a surface patterned to selectively reflect or transmit different wavelengths by differing amounts across a spectrum of wavelengths. In one aspect, a measurement tool contains an optical element including a layer of material patterned so that the optical element selectively transmits or reflects, during operation of the measurement tool, light in at least a portion of a wavelength range by differing amounts, the differing amounts being related to a property of a sample. The wavelength range can include wavelengths in a range from about 0.2µm to about 100µm. Additionally, the sample can include wellbore fluids and the property of the sample is a property of the wellbore fluids.

    Abstract translation: 描述了用于提供使用集成计算元件的光学分析系统的技术,所述计算元件的表面被图案化以通过波长频谱上的不同量选择性地反射或传输不同波长。 在一个方面,测量工具包含光学元件,该光学元件包括被图案化的材料层,使得光学元件在测量工具的操作期间选择性地透射或反射至少一部分波长范围内的光,不同的量,不同的 数量与样本的属性有关。 波长范围可以包括在约0.2μm至约100μm的范围内的波长。 此外,样品可以包括井筒流体,并且样品的性质是井筒流体的性质。

    LIGHT WAVELENGTH MEASUREMENT METHOD AND LIGHT WAVELENGTH MEASUREMENT APPARATUS
    104.
    发明公开
    LIGHT WAVELENGTH MEASUREMENT METHOD AND LIGHT WAVELENGTH MEASUREMENT APPARATUS 审中-公开
    LICHTWELLENLÄNGENMESSVORRICHTUNGLICHTWELLENLÄNGENMESSVERFAHREN

    公开(公告)号:EP2975372A1

    公开(公告)日:2016-01-20

    申请号:EP14765498.2

    申请日:2014-03-10

    Abstract: A light wavelength measurement method of measuring a wavelength of target light includes: receiving target light on a second dispersion device that disperses the target light into a plurality of second beams which reach a plurality of positions corresponding to the wavelength of the target light (S106, S202); and measuring the wavelength of the target light, by using the plurality of the second beams as a vernier scale for measuring the wavelength of the target light within a wavelength range specified by a main scale (S108, S204).

    Abstract translation: 测量目标光的波长的光波长测量方法包括:在第二色散装置上接收目标光,该第二色散装置将目标光分散成多个第二光束,该第二光束到达对应于目标光的波长的多个位置(S106, S202); 并且通过使用多个第二光束作为用于测量由主刻度指定的波长范围内的目标光的波长的游标(S108,S204)来测量目标光的波长。

    DETERMINATION D'UNE FONCTION D'AUTOCORRELATION
    109.
    发明公开
    DETERMINATION D'UNE FONCTION D'AUTOCORRELATION 有权
    方法用于确定自相关函数

    公开(公告)号:EP1745267A2

    公开(公告)日:2007-01-24

    申请号:EP05747089.0

    申请日:2005-04-22

    CPC classification number: G01N21/6408 G01J3/44 G01J3/457

    Abstract: The invention relates to a method of determining the autocorrelation function g(τ) of an optical signal. The inventive method comprises the following steps consisting in: determining the instants (ti) at which the photons appear; for a pre-determined set of pulses (w), calculating function s(w) = Si e-jwti, wherein e-jwti = coswti + sinwti, the summation being performed on all of the pulses received; determining the square S(w) of the modulus of function s(w); and calculating the Fourier transform g(τ) of the power spectrum S(w) for a pre-determined set of temporal variation values.

Patent Agency Ranking