Abstract:
The invention relates to an apparatus (1200,1300) for transmission of energy of an ion to at least one gas particle and/or for transportation of an ion. The invention also relates to a particle beam device having an apparatus such as this. In particular, a container is provided, in which a gas is arranged which has gas particles, wherein the container has a transport axis. Furthermore, at least one first multipole unit and at least one second multipole unit are provided, which are arranged along the transport axis. The first multipole unit and the second multipole unit are formed by printed circuit boards. Furthermore, an electronic circuit is provided, which provides each multipole unit with a potential, such that a potential gradient is generated, in particular along the transport axis.
Abstract:
A spherical aberration correction decelerating lens corrects a spherical aberration occurring in an electron beam or an ion beam (hereinafter, referred to as "beam") emitted from a predetermined object plane position with a certain divergence angle, and said spherical aberration correction decelerating lens comprises at least two electrodes, each of which is constituted of a surface of a solid of revolution whose central axis coincides with an optical axis and each of which receives an intentionally set voltage applied by an external power supply, wherein at least one of the electrodes includes one or more meshes (M) which has a concaved shape opposite to an object plane (P0) and which is constituted of a surface of a solid of revolution so that a central axis of the concaved shape coincides with the optical axis, and a voltage applied to each of the electrodes causes the beam to be decelerated and causes formation of a decelerating convergence field for correcting the spherical aberration occurring in the beam. This makes it possible to provide a spherical aberration correction decelerating lens which converges a beam, emitted from the sample and having high energy and a large divergence angle, onto an image plane.
Abstract:
A device (1700) for the parallel processing of ions is provided. The device may be utilized for thin film deposition or ion implantation and may include the following: an ion source (1702), ion capture (1704) and storage ion optics (1708), mass selection ion optics (1706), neutral trapping elements, extraction ion optics, beam neutralization mechanisms, and a substrate on which deposition and thin film growth occurs is provided. Ions are captured and stored within a closely packed array of parallel ion conducting channels. The ion conductive channels transport high current low energy ions from the ion source to irradiate the substrate target. During transport, ion species can be mass selected, merged with ions from multiple sources, and undergo gas phase charge exchange ion molecule reactions. Additionally, neutrals from the ion source, ion-molecule reaction reagent gases, residual background gas, or neutralization of ions may be eliminated from the processing stream by turbo pumping, cryo pumping, and cryocondensation on some of the ion optic elements. Different types of ion optic elements, including elements which are parallel or perpendicular to the ion path, and neutral trapping elements may be combined in different ways to achieve thin film ion deposition over a large homogeneous substrate surface.
Abstract:
Provided is a small ion implanting apparatus for manufacturing single crystalline films, with stable parallelism of ion beams and high controllability of density distribution. The ion implanting apparatus extracts hydrogen ions or rare gas ions from an ion source (12), desired ions (B) are selected from a first fan-shaped electromagnet (14), the ions (B) are scanned by a scanner (16), the ions (B) are parallelized by a second fan-shaped electromagnet (18) and implanted into a substrate (20), and a single crystalline film is manufactured. The ion source (12) is arranged in the vicinity of an inlet side focal point (F1) of the first fan-shaped electromagnet (14). When the opening of the extracting section of the ion source (12) is made circular and that a deflection plane in the first fan-shaped electromagnet (14) matches with the inlet side focal point on a plane vertical to the deflection plane, the spot shape of the ion beam (B) after passing through the first fan-shaped electromagnet (14) becomes circular and completely parallel on the two planes.
Abstract:
An ion source for extracting a ribbon ion beam with improved height uniformity is disclosed. Gas nozzles are disposed in the chamber proximate the extraction aperture. The gas that is introduced near the extraction aperture serves to shape the ribbon ion beam as it is being extracted. For example, the height of the ribbon ion beam may be reduced by injecting gas above and below the ion beam so as to compress the extracted ion beam in the height direction. In some embodiments, the feedgas is introduced near the extraction aperture. In other embodiments, a shield gas, such as an inert gas, is introduced near the extraction aperture.
Abstract:
An ion implantation system, ion source, and method are provided having a gaseous aluminum-based ion source material. The gaseous aluminum-based ion source material can be, or include, dimethylaluminum chloride (DMAC), where the DMAC is a liquid that transitions into vapor phase at room temperature. An ion source receives and ionizes the gaseous aluminum-based ion source material to form an ion beam. A low-pressure gas bottle supplies the DMAC as a gas to an arc chamber of the ion source by a primary gas line. A separate, secondary gas line supplies a co-gas, such as a fluorine-containing molecule, to the ion source, where the co-gas and DMAC reduce an energetic carbon cross-contamination and/or increase doubly charged aluminum.
Abstract:
The present invention relates to a method of mass spectrometry, an apparatus adapted to perform the method and a mass spectrometer. More particularly, but not exclusively, the present invention relates to a method of mass spectrometry comprising the step of associating parent and fragmentation ions from a sample by measuring the parent and fragmentation ions from two or more different areas of the sample and identifying changes in the number of parent ions between the areas in the sample, and corresponding changes in the number of fragmentation ions between the two areas.
Abstract:
The present invention relates to a method of mass spectrometry, an apparatus adapted to perform the method and a mass spectrometer. More particularly, but not exclusively, the present invention relates to a method of mass spectrometry comprising the step of associating parent and fragmentation ions from a sample by measuring the parent and fragmentation ions from two or more different areas of the sample and identifying changes in the number of parent ions between the areas in the sample, and corresponding changes in the number of fragmentation ions between the two areas.