Abstract:
The invention concerns a system for automatic following guidance, particularly for heavy-traffic automatic following guidance, of a motor vehicle (1), designed to ease the burden on the driver in heavy-traffic situations both by taking over lateral guidance by means of an automatic steering regulation system and by maintaining a set distance from a leading vehicle. The latter function requires an adaptive cruise and braking regulation system with “stop” and “go” function. According to the invention, selection and decision means (5, 6, 7, 8, 9) are provided that select both the regulating parameters and the types of controllers [sic], e.g., following guidance of the motor vehicle (1) on the basis of lane markings recognized by means of a video camera or on the basis of a recognized leading vehicle. The system is divided into hierarchical levels I-IV, the driver always being in the monitoring and adaptation loop assigned to the top level IV of the hierarchy, so that he has the highest priority and can override the system at any time.
Abstract:
GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50,52,200,452) in neural networks (132, FIGS. 6-8) in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory (484) which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive auto-pilot mode is provided.
Abstract:
This invention provides automatic longitudinal control of vehicles on highways, including speed control and protection against collision. The invention also provides for lane changing, following highway directional changes, route control, and transitions between the operator-controlled and the automatically controlled states. The invention is ideally configured to be employed jointly and cooperatively with previously developed means of automatic lateral control. Groups of permanent magnets are embedded in the highway surface at regular intervals. Permanent magnet sensors are installed in vehicles so that proximity and polarity indications of embedded magnets are obtained as a vehicle proceeds along the highway. Each group of magnets encodes a pseudo-random number that is sensed by the vehicle equipment and transmitted, via a radio link, to wayside computing equipment which determines vehicle longitudinal position and vehicle separation distances that are used as the basis of safety commands which are transmitted to the vehicles from the wayside. The system is configured to provide the highest possible reliability and fail-safe operation through employment of triply redundant communication and computation elements.
Abstract:
A lane keeping control method for a vehicle may include determining, by a controller, whether a wheel speed difference exists between predetermined wheels, during braking while the vehicle travels straight, determining, by the controller, a reference wheel and a control wheel, based on the wheel speed difference between the predetermined wheels, and reducing, by the controller, a wheel speed difference between the reference wheel and the control wheel by performing pre-decompression control for the control wheel, when the wheel speed difference exists.
Abstract:
A method for changing a vehicle's trajectory, wherein the vehicle includes a steering arrangement including a manual steering device, at least one pair of ground engaging members and a mechanical interconnection therebetween, includes the steps of applying a braking force to at least one of the ground engaging members so that the vehicle's trajectory is changed, and simultaneously suppressing steering device disturbances resulting from the mechanical interconnection.
Abstract:
In a method and apparatus for assisting the driver of a vehicle in maintaining a traffic lane limited by traffic lane markings, the traffic lane markings and the position of the vehicle in the traffic lane are detected. Upon an actual or impending change of traffic lanes a lane change warning is output to the driver of the vehicle in a first step, and a course correcting actuating intervention counteracting the lane change is carried out in a second step. The actuating intervention is carried out only if the change of traffic lanes is impermissible due to the type of traffic lane marking to be crossed during the traffic lane change, or if the lane change is not possible without danger due to collision-endangering objects present on the side of the traffic lane.
Abstract:
When an obstacle is sensed on a side of a vehicle, the future position of the vehicle after a prescribed time is predicted. When the predicted vehicle future position reaches a prescribed lateral position in the lane width direction, a decision to start a control is made, and the vehicle is controlled in a direction to prevent it from coming too close to the obstacle. If a state occurs in which the obstacle is sensed after not being sensed (i.e., it is first sensed), a decision to start the control is suppressed.
Abstract:
Disclosed is a driving support apparatus for setting a traveling lane in which a vehicle can travel on the basis of a road marking to indicate a lane boundary or a traveling-prohibited region and performing support by combining steering of the vehicle and deceleration of the vehicle so that the vehicle is allowed to travel in the traveling lane if the vehicle is to be departed from the traveling lane, wherein the steering of the vehicle and the deceleration of the vehicle, which are to be performed when the support is performed so that the vehicle is allowed to travel in the traveling lane, are individually controlled depending on a difference ΔY between a target yaw rate Ytrg and an actual yaw rate Yrea if the actual yaw rate Yrea is smaller than the target yaw rate Ytrg in order not to allow the vehicle to exceed the traveling lane.
Abstract:
A vehicle control apparatus includes a first section that recognizes a lane boundary line of a lane in which a vehicle is traveling. A second section recognizes a present position of a predetermined reference point of the vehicle. A third section calculates a predicted position of the reference point, wherein the predicted position is a predetermined interval ahead of the present position. A fourth calculates an imaginary lane boundary line, wherein the imaginary lane boundary line is tangent to the lane boundary line at a point close to the predicted position. A fifth section performs a control of preventing the vehicle from deviating from the lane by controlling the vehicle depending on positional relationship between the vehicle and the lane boundary line. A sixth section selectively permits and suppresses the control depending on positional relationship among the imaginary lane boundary line, the present position, and the predicted position.
Abstract:
A method for influencing the direction of travel of a vehicle. In order to lower the risk of accidents in driving situations in which the driver reacts incorrectly, for example because of being surprised, it is provided that the driving operation be monitored in reference to the occurrence of an event due to which the travel direction of the vehicle changes, deviating from the travel direction specified at the steering wheel, and when such an event is detected that an automatic intervention in the driving operation be performed whereby the vehicle is moved back approximately into the original direction of travel in which it was moving before the event occurred.