Abstract:
On produit un accéléromètre à semi-conducteurs en fixant une couche semi-conductrice à une tranche de support par l'intermédiaire d'une couche d'oxyde épaisse. Une configuraton d'accéléromètre est produite dans la couche semi-conductrice, qui est alors utilisée comme un masque permettant de graver une cavité dans l'oxyde épais sous-jacent. Le masque peut comprendre une ou plusieurs ouvertures, de sorte qu'une région formant la masse présentera des ouvertures correspondantes à celles de la couche d'oxyde sous-jacente. La structure obtenue à partir d'une gravure d'oxyde présente la configuration d'accéléromètre prescrite composée d'une région formant une masse de large volume soutenue en porte-à-faux par une multiplicité de régions piézorésistives en forme de bras qui relient la masse à une partie de support périphérique de la couche semi-conductrice. Immédiatement au-dessous de cette configuration d'accéléromètre se trouve une cavité destinée à la flexion, créée lorsqu'on enlève la couche d'oxyde sous-jacente. La couche semi-conductrice demeure fixée à la tranche de support par l'intermédiaire de la couche d'oxyde épaisse qui entoure la configuration d'accéléromètre, et qui a été masquée de manière appropriée par la partie périphérique de la couche semi-conductrice supérieure au cours de l'étape de gravure de l'oxyde. Selon un second mode de réalisation, les régions de support en forme de bras sont dimensionnées séparément de la région formant la masse, et l'on utilise une multiplicité de régions d'oxyde enfouies comme élément d'arrêt de gravure de semi-conducteur.
Abstract:
The method of fabrication of a monolithic silicon membrane structure in which the membrane and its supporting framework are constructed from a single ultra thick body of silicon. The fabrication sequence includes the steps of providing a doped membrane layer on the silicon body, forming an apertured mask on the silicon body, and removal of an unwanted silicon region by mechanical grinding and chemical etching to provide a well opening in the silicon body terminating in the doped membrane.
Abstract:
PROBLEM TO BE SOLVED: To provide a method for manufacturing an MEMS device from a single silicon-on-insulator (SOI) wafer. SOLUTION: An SOI wafer 20 includes a silicon (Si) handle layer 28, an Si mechanism layer 24, and an insulating layer 26 located between the Si handle layer and the Si mechanism layer. A process of etching an active component from the Si mechanism layer is included. After that, boron is doped onto a surface of the exposed Si mechanism layer. Next, a part of an insulating layer near the active component in which the Si mechanism layer is etched is removed and the Si handle layer near the active component is etched. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
The invention relates to a method for producing micromechanical structures having a raised lateral wall progression or an adjustable angle of inclination. The micromechanical structures are etched out of an SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) provided on, or deposited on, a silicon semiconductor layer (1, 10), by dry-chemical etching of the SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50). The lateral wall progression of the micromechanical structure is formed by varying the germanium part in the SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) to be etched. There is a higher germanium part in regions that are to etched more aggressively. The variation of the germanium part in the SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) is adjusted by a method selected from a group wherein an SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) having a varying germanium content is deposited, wherein germanium is introduced into a silicon semiconductor layer or an SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50), wherein silicon is introduced into a germanium layer or an SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50), and/or wherein a SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) is subjected to thermal oxidation.
Abstract:
The invention relates to a method for producing micromechanical structures having a raised lateral wall progression or an adjustable angle of inclination. The micromechanical structures are etched out of an SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) provided on, or deposited on, a silicon semiconductor layer (1, 10), by dry-chemical etching of the SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50). The lateral wall progression of the micromechanical structure is formed by varying the germanium part in the SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) to be etched. There is a higher germanium part in regions that are to etched more aggressively. The variation of the germanium part in the SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) is adjusted by a method selected from a group wherein an SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) having a varying germanium content is deposited, wherein germanium is introduced into a silicon semiconductor layer or an SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50), wherein silicon is introduced into a germanium layer or an SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50), and/or wherein a SiGe-mixed semiconductor layer (3a, 3b, 30, 30a, 30b, 50) is subjected to thermal oxidation.
Abstract:
Methods for producing a MEMS device from a single silicon-on-insulator (SOI) wafer. An SOI wafer includes a silicon (Si) handle layer, a Si mechanism layer and an insulator layer located between the Si handle and Si mechanism layers. An example method includes etching active components from the Si mechanism layer. Then, the exposed surfaces of the Si mechanism layer is doped with boron. Next, portions of the insulator layer proximate to the etched active components of the Si mechanism layer are removed and the Si handle layer is etched proximate to the etched active components.