Abstract:
An etching method for manufacturing a substrate structure having a thick electrically conductive layer, and a substrate structure having a thick electrically conductive layer are provided. The etching method includes providing an electrically insulating substrate structure including a thermally conductive and electrically insulating layer, an electrically conductive layer, and a non-photosensitive polymer masking layer, removing one part of the non-photosensitive polymer masking layer and one part of the electrically conductive layer by a machining process to form at least one electrically conductive recess having the electrically conductive layer exposed, forming a predetermined thickness ratio between a thickness of the electrically conductive recess and a thickness of the electrically conductive layer, removing a reserved part of the electrically conductive layer between a bottom wall of the electrically conductive recess and a bottom surface of the electrically conductive layer, and removing a remaining part of the non-photosensitive polymer masking layer.
Abstract:
A method for manufacturing a structure for embedding and packaging multiple devices by layer includes preparing a polymer supporting frame, mounting a first device in a first device placement mouth frame to form a first packaging layer, forming a first circuit layer and a second circuit layer, forming a second conductive copper pillar layer and a second sacrificial copper pillar layer, forming a second insulating layer on the first circuit layer, and forming a third insulating layer on the second circuit layer, forming a second device placement mouth frame vertically overlapped with the first device placement mouth frame, mounting a second device and a third device in the second device placement mouth frame to form a second packaging layer, forming a third circuit layer on the second insulating layer. A terminal of the second device and a terminal of the third device are respectively communicated with the third circuit layer.
Abstract:
A fingerprint identification module is provided for identifying a fingerprint of a finger. The fingerprint identification module includes a sensing chip and a thermally deformable layer. The thermally deformable layer is disposed over the sensing chip and includes a sensing region. When the finger is placed on the sensing region, the fingerprint of the finger is sensed by the sensing chip. If the fingerprint identification result of the fingerprint identification module fails, the thermally deformable layer is firstly changed to a molten state and then returned to a solidified state within a predetermined time period. Consequently, the finger is fixed by the thermally deformable layer.
Abstract:
An interconnection substrate includes a plurality of electrically conductive elements of at least one wiring layer defining first and second lateral directions. Electrically conductive projections for bonding to electrically conductive contacts of at least one component external to the substrate, extend from the conductive elements above the at least one wiring layer. The conductive projections have end portions remote from the conductive elements and neck portions between the conductive elements and the end portions. The end portions have lower surfaces extending outwardly from the neck portions in at least one of the lateral directions. The substrate further includes a dielectric layer overlying the conductive elements and extending upwardly along the neck portions at least to the lower surfaces. At least portions of the dielectric layer between the conductive projections are recessed below a height of the lower surfaces.
Abstract:
Disclosed is a printed circuit board, including a base member, an insulating layer formed on each of both surfaces of the base member so that the surfaces of the base member are flattened, a circuit layer formed on the insulating layer, and a via for connecting the circuit layer formed on one surface of the base member with the circuit layer formed on the other surface of the base member. A method of manufacturing the printed circuit board is also provided.
Abstract:
A multi-layer wiring board includes a substrate; a land including a first conductive member arranged on the substrate; a second conductive member that is deposited on a surface of the first conductive member, which is a surface distant from the substrate; and a stress relaxation layer arranged between the first conductive member and the second conductive member; and a connection portion that makes contact with the land and that is electrically connected to the land.
Abstract:
Mobile ion diffusion causes a shift in the threshold voltage of non-volatile storage elements in a memory chip, such as during an assembly process of the memory chip. To reduce or avoid such shifts, a coating can be applied to a printed circuit board substrate or a leader frame to which the memory chip is surface mounted. An acrylic resin coating having a thickness of about 10 μm may be used. A memory chip is attached to the coating using an adhesive film. Stacked chips may be used as well. Another approach provides metal barrier traces over copper traces of the printed circuit board, within a solder mask layer. The metal barrier traces are fabricated in the same pattern as the copper traces but are wider so that they at least partially envelop and surround the copper traces. Corresponding apparatuses and fabrication processes are provided.
Abstract:
The present invention relates to an insulator as an insulating layer in a laminate which can inhibit dusting at the time of use, more particularly an electronic circuit component to which the insulator has been applied, particularly a wireless suspension. The insulator comprises a laminate of one or more insulation unit layers etchable by a wet process, the insulator having been subjected to plasma treatment after wet etching. The insulator exists mainly as an insulating layer in a laminate having a layer construction of first inorganic material layer-insulating layer-second inorganic material layer or a layer construction of inorganic material layer-insulating layer, and at least a part of the inorganic material layer has been removed to expose the insulating layer.
Abstract:
An object of this invention is to provide a method for manufacturing an electronic device wherein a conductor layer is uniformly formed on a substrate having a super large area. In the method for manufacturing the electronic device, a metal film for forming a gate electrode is selectively embedded in a transparent resin film formed on a substrate, and the metal film is formed by sputtering directly on the substrate at the gate electrode portion, and on an insulating coat film on portions other than the gate electrode portion. The metal film on the insulating coat film is removed by chemical liftoff with removal of the insulating coat film by etching.
Abstract:
There is provided a printed circuit board whose peel strength is large and a printed circuit board fabrication method and a printed circuit board machining apparatus that allow a fabrication time and a fabrication cost to be reduced. The fabrication method of the printed circuit board comprises steps of forming a resist layer on a surface of the printed circuit board whose surface is made of an insulator, of forming a hole that is connected from the surface of the resist layer to a conductor pattern of an inner layer and a hole and grooves having a depth not connected with the conductor layer of the inner layer by irradiating lasers, of filling a conductive material into the holes and the grooves to form a conductor pattern and of removing the resist layer to project a portion of the conductor pattern out of the surface of the insulating layer.