Abstract:
A device includes a device wafer (400) having a circuit component (375) formed thereon and having vias (300) formed therein and a cap wafer (100) bonded to the device wafer. The cap wafer has a cavity (250) therein. The cavity has a post (200) formed therein, and the post is positioned to mechanically support the vias formed in the device wafer. The cavity has a volume, the volume substantially enclosing the circuit component formed on the device wafer. The cavity has a width and height such that an impedance of a transmission line is dependent upon the width and height of the cavity, or the impedance of a transmission line is dependent upon the width of a center conductor (350) within the cavity.
Abstract:
An electromechanical switch (l00) includes an actuation electrode (110), an anchor (115), a cantilever electrode (105), a contact (120), and signal lines. The actuation electrode (110) and anchor (115) are mounted to a substrate (130). The cantilever electrode (105) is supported by the anchor (115) above the actuation electrode (110). The contact (120) is mounted to the cantilever electrode (105). The signal lines are positioned to form a closed circuit with the contact (120) when an actuation voltage is applied between the actuation electrode (110) and the cantilever electrode (105) causing the cantilever electrode (105) to bend towards the actuation electrode (110) in a zipper like movement starting from a distal end of the cantilever electrode (105).
Abstract:
A micro-scale interconnect device with internal heat spreader and method for fabricating same. The device includes first and second arrays of generally coplanar electrical communication lines. The first array is disposed generally along a first plane, and the second array is disposed generally along a second plane spaced from the first plane. The arrays are electrically isolated from each other. Embedded within the interconnect device is a heat spreader element. The heat spreader element comprises a dielectric material disposed in thermal contact with at least one of the arrays and a layer of thermally conductive material embedded in the dielectric material. The device is fabricated by forming layers of electrically conductive, dielectric, and thermally conductive materials on a substrate. The layers are arranged to enable heat energy given off by current-carrying communciation lines to be transferred away from the communciation lines.
Abstract:
Electrothermal Self-Latching MEMS Switch and Method. According to one embodiment, a microscale switch (100) having a movable microcomponent (108) is provided and includes a substrate (102) having a stationary contact (104). The switch (100) can also include a structural layer (112) having a movable contact (108) positioned for contacting the stationary contact (104) when the structural layer (112) moves toward the substrate (102). Electrothermal latch (126) attached to the structural layer (112) and having electrical communication (114, 116) with the movable contact (108) to provide current flow between the electrothermal latch (126) and the stationary contact (104) when the movable contact (108) contacts the stationary contact (104) for maintaining the movable contact (108) in contact with the stationary contact (104).
Abstract:
A microelectromechanical (MEM) switch is fabricated inexpensively by using processing steps which are standard for fabricating multiple metal layer integrated circuits, such as CMOS. The exact steps may be adjusted to be compatible with the process of a particular foundry, resulting in a device which is both low cost and readily integrable with other circuits. The processing steps include making contacts for the MEM switch from metal plugs which are ordinarily used as viasto connect metal layers which are separated by a dielectric layer. Such contact vias are formed on either side of a sacrificial metallization area, and then the interconnect metallization is removed from between the contact vias, leaving them separated. Dielectric surrounding the contacts is etched back so that they protrude towards each other. Thus, when the contacts are moved towards each other by actuating the MEM switch, they connect firmly without obstruction. Tungsten is typically used to form vias in CMOS processes, and it makes an excellent contact material, but other via metals may also be employed as contacts. Interconnect metallization may be employed for other structural and interconnect needs of the MEM switch, and is preferably standard for the foundry and process used. Various metals and dielectric materials may be used to create the switches, but in a preferred embodiment the interconnect metal layers are aluminum and the dielectric material is Si>O2
Abstract:
A microelectro-mechanical device which includes a fixed electrode formed on a substrate, the fixed electrode including a transparent, high resistance layer, and a moveable electrode formed with an anisotropic stress in a predetermined direction and disposed adjacent the fixed electrode. The device includes first and second electrically conductive regions which are isolated from one another by the fixed electrode. The moveable electrode moves to cover the fixed electrode and to electrically couple to the second conductive region, thus electrically coupling the first and second conductive regions, in response to a potential being applied across the fixed and moveable electrodes. The fixed electrode is transparent to electromagnetic signals or waves and the moveable electrode impedes or allows transmission of electromagnetic signals or waves. In one embodiment of the invention, the fixed and moveable electrodes are configured within an array of similar devices, and each device or groups of devices in the array are individually addressable to actuate the moveable electrodes. In another embodiment of the invention, there is provided a reconfigurable circuit including an array of actuatable devices which are addressed individually or in selected groups, each of the actuatable devices having a fixed electrode formed on a substrate, the fixed electrode including a transparent, high resistance layer, and a moveable electrode formed with an anisotropic stress in a predetermined direction and disposed adjacent the fixed electrode.
Abstract:
Nanoelectromechanical (NEMS) devices having nanomagnets for an improved range of operating voltages and improved control of dimensions of a cantilever are described. For example, in an embodiment, a nanoelectromechanical (NEMS) device includes a substrate layer, a first magnetic layer disposed above the substrate layer, a first dielectric layer disposed above the first magnetic layer, a second dielectric disposed above the first dielectric layer, and a cantilever disposed above the second dielectric layer. The cantilever bends from a first position to a second position towards the substrate layer when a voltage is applied to the cantilever.