Abstract:
Methods of fabricating comb drive devices utilizing one or more sacrificial etch-buffers are disclosed. An illustrative fabrication method may include the steps of etching a pattern onto a wafer substrate defining one or more comb drive elements and sacrificial etch-buffers, liberating and removing one or more sacrificial etch-buffers prior to wafer bonding, bonding the etched wafer substrate to an underlying support substrate, and etching away the wafer substrate. In some embodiments, the sacrificial etch-buffers are removed after bonding the wafer to the support substrate. The sacrificial etch-buffers can be provided at one or more selective regions to provide greater uniformity in etch rate during etching. A comb drive device in accordance with an illustrative embodiment can include a number of interdigitated comb fingers each having a more uniform profile along their length and/or at their ends, producing less harmonic distortion during operation.
Abstract:
There has been a trade-off between the rigidity and the mass of a movable section of a microactuator, and also between the rigidity of the movable section and the electrostatic force. A microactuator 100 includes: a base 1; a first comb electrode 2 supported by the base 1; a movable section 6 having a second comb electrode 8 opposing the first comb electrode 2, and at least one reinforcement rib 9 protruding toward the base 1; and an elastic supporting member 3 for supporting the movable section 6 so as to allow the movable section 6 to be displaced with respect to the base 1. The height of the second comb electrode 8 is different from the height of the at least one reinforcement rib 9.
Abstract:
본발명은, 베이스기판상에제1 에칭중지층을형성하는단계[이때, 제1 에칭중지층은연속된컷아웃의제1 패턴을상기에칭중지층이갖도록형성된다]와, 제1 에칭중지층상에제1 전극재료층을형성하는단계와, 제1 전극재료층상에제2 에칭중지층을형성하는단계[이때, 제2 에칭중지층은제1 패턴과는상이한, 연속된컷아웃의제2 패턴을상기제2 에칭중지층이갖도록형성된다]와, 제2 에칭중지층상에제2 전극재료층을형성하는단계와, 구조화된마스크를제2 전극재료층상에형성하는단계와, 제1 전극재료층으로부터하나이상의제1 전극유닛을에칭하고제2 전극재료층으로부터하나이상의제2 전극유닛을에칭하기위해제1 방향으로제1 에칭단계를구현하고, 제1 방향에반대되는제2 방향으로제2 에칭단계를구현하는단계를포함하는, 마이크로기계부품(100)의제조방법에관한것이다. 또한, 본발명은마이크로기계부품(100)에관한것이다.
Abstract:
본 발명은, 베이스 기판 상에 제1 에칭 중지층을 형성하는 단계[이때, 제1 에칭 중지층은 연속된 컷아웃의 제1 패턴을 상기 에칭 중지층이 갖도록 형성된다]와, 제1 에칭 중지층 상에 제1 전극 재료층을 형성하는 단계와, 제1 전극 재료층 상에 제2 에칭 중지층을 형성하는 단계[이때, 제2 에칭 중지층은 제1 패턴과는 상이한, 연속된 컷아웃의 제2 패턴을 상기 제2 에칭 중지층이 갖도록 형성된다]와, 제2 에칭 중지층 상에 제2 전극 재료층을 형성하는 단계와, 구조화된 마스크를 제2 전극 재료층 상에 형성하는 단계와, 제1 전극 재료층으로부터 하나 이상의 제1 전극 유닛을 에칭하고 제2 전극 재료층으로부터 하나 이상의 제2 전극 유닛을 에칭하기 위해 제1 방향으로 제1 에칭 단계를 구현하고, 제1 방향에 반대되는 제2 방향으로 제2 에칭 단계를 구현하는 단계를 포함하는, 마이크로 기계 부품(100)의 제조 방법에 관한 것이다. 또한, 본 발명은 마이크로 기계 부품(100)에 관한 것이다.
Abstract:
A micro oscillating device and a micro oscillating device array are provided to prevent leakage of an electric field by including a fourth shield electrode unit in a frame main body. A micro oscillating device includes a frame(21), an oscillating unit(10), a pair of connection units(22), and second driving electrodes(23). The oscillating unit includes a first driving electrode(12) for supplying a reference potential. The pair of connection units define an axis of an oscillating operation of the oscillating unit by connecting the frame and the oscillating unit. The second driving electrode is fixed to the frame to generate driving force of the oscillating operation by cooperating with the first driving electrode. The first driving electrode includes first and second end extension units(12A,12B) which are extended in a direction crossing the axis and spaced apart from each other.
Abstract:
A method for etching a comb electrode having decoupled upper and lower structures by a self-alignment is provided to align an upper comb electrode and a lower comb electrode accurately on a substrate. A method for etching a comb electrode having decoupled upper and lower structures by a self-alignment includes a step of forming a first metal mask at a position on which an upper comb electrode(110) of a first silicon layer(201) is formed. A first PR mask is formed at a position corresponding to the first metal mask of the first silicon layer and a lower comb electrode(120). The first silicon layer is selectively etched by using the first PR mask as an etching diffusion barrier. An insulating layer(215) of the substrate is selectively etched by using the first PR mask as an etching diffusion barrier. The second silicon layer is selectively etched by using the first PR mask as an etching diffusion barrier.
Abstract:
A micro-oscillating element includes a frame, a movable functional portion, and a torsional joint for joining the frame and the functional portion. The micro-oscillating element also includes first and second comb-tooth electrodes for generation of the driving force for the oscillating motion of the movable functional portion about the torsional joint. The first comb-tooth electrode includes a plurality of first electrode teeth each having a first conductor, an insulator and a second conductor laminated in the direction of the oscillating motion, where the first conductor and the second conductor are electrically connected with each other. The second comb-tooth electrode includes a plurality of second electrode teeth caused not to face the second conductor but to face the first conductor of the first electrode teeth during non-operation. The second electrode teeth are longer than the first conductor in the direction of the oscillating motion.
Abstract:
본 발명은 비선형 특성을 가진 기계적 변조기 및 이를 이용한 구동장치에 관한 것이다. 본 발명의 기계적 변조기는 제1 및 제2 질량체와, 상기 제1 및 제2 질량체 사이를 연결하는 제1 탄성체와, 상기 제2 질량체와 고정지지단 사이를 연결하는 제2 탄성체를 포함하며, 상기 제1 질량체 또는 제2 질량체 중 하나로 구동 입력을 받고 나머지 하나로 구동을 최종 출력하는 기계적 변조기에 있어서, 상기의 탄성체 중 적어도 하나 이상은 변형량이 커질수록 강성계수가 변하는 비선형 특성을 가지도록 구성된다. 이때, 탄성체의 비선형 특성은 변형이 심할수록 강성계수가 커지는 증가 비선형 특성과, 변형이 심할수록 강성계수가 작아지는 감소 비선형 특성이 있으며, 본 발명의 기계적 변조기는 두 개의 비선형 특성 중 하나 또는 둘 모두를 적용하여 사용한다.
Abstract:
A microelectromechanical gyroscope structure for detecting angular motion about an axis of angular motion. A drive element is suspended for one-dimensional motion in a direction of a drive axis, and a sense body carries one or more sense rotor electrodes and is coupled to the drive element with a first directional spring structure that forces the sense body to move with the drive element and has a preferred direction of motion in a direction of a sense axis. The drive element includes an actuation body and a drive frame wherein the first spring structure couples the sense body directionally to the drive frame, and a second directional spring structure that couples the drive frame to the actuation body and has a preferred direction of motion in the direction of the sense axis.