Abstract:
An energy collecting device is disclosed. For example, the energy collecting device comprises a plate layer having a plurality of perforations for receiving a plurality of molecules, a molecular energy collecting layer, coupled to the plate layer, having an impacting structure for receiving the plurality of molecules, and a substrate layer, coupled to the molecular energy collecting layer, having a conductor wire coil for collecting electrons that are generated when the plurality of molecules impacts the impacting structure.
Abstract:
A micro structure and an electric circuit included in a micro electro mechanical device are manufactured over the same insulating surface in the same step. In the micro electro mechanical device, an electric circuit including a transistor and a micro structure are integrated over a substrate having an insulating surface. The micro structure includes a structural layer having the same stacked-layer structure as a layered product of a gate insulating layer of the transistor and a semiconductor layer provided over the gate insulating layer. That is, the structural layer includes layers formed of the same insulating film as the gate insulating layer and the same semiconductor film as the semiconductor layer of the transistor. Further, the micro structure is manufactured by using each of conductive layers used for a gate electrode, a source electrode, and a drain electrode of the transistor as a sacrificial layer.
Abstract:
An actuator comprises a connection section having one end rotatably connected to a connection point (C1) of a fixed section and the other end rotatably connected to a connection point (C2) of a moving section, a connection section having one end rotatably connected to a connection point (C3) of the fixed section and the other end rotatably connected to a connection point (C4) of the moving sections a comb-teeth electrode having the root section connected to a comb-teeth base point (B1) and the fore-end section extending along the turning path, and a comb-teeth electrode having the root section connected to the fixed section and the other section extending along the curve of the comb-teeth electrode and opposed to the comb-teeth electrode with a predetermined gap.
Abstract:
In one embodiment, a rotary device includes a multiwall nanotube that extends substantially perpendicularly from a substrate. A rotor may be coupled to an outer wall of the multiwall nanotube, be spaced apart from the substrate, and be free to rotate around an elongate axis of the multiwall nanotube.
Abstract:
A micromachine switch of the present invention is a micromachine switch for switching an electrical connection between signal electrodes in accordance with control signals from outside which include: a first control signal for electrically connecting the signal electrodes between which a signal is to be passed; and a second control signal for disconnecting the electrical connection between the signal electrodes. The micromachine switch comprises: a substrate; a rotating body provided on the substrate, which is rotatable on the substrate; a movable electrode provided on the rotating body; a first signal electrode, one end of which is electrically connected to one end of the movable electrode, and another end of which is provided on the substrate; a second signal electrode which is provided near the rotating body so as to be positioned such that a rotation of the rotating body causes the second signal electrode to be electrically connected to another end of the movable electrode; and a drive section for causing, in accordance with the first control signal, the rotating body to rotate until the rotating body is in such a position as to allow said another end of the movable electrode and the second signal electrode to be electrically connected, and for causing, in accordance with the second control signal, the rotating body to rotate until the rotating body is in such a position as to disconnect an electrical connection between said another end of the movable electrode and the second signal electrode.
Abstract:
A micro transport machine may include a substrate and a movable device comprising a drive component responsive to a wireless power source. The movable device is operable to move between a plurality of disparate areas on the substrate.
Abstract:
A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 &mgr;m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.
Abstract:
The present invention is a technique for manufacturing microtube devices which have circumferential geometries repeated either uniformly or nonuniformly along the tube or device axis with sub-micron precision. The preferred manufacturing process involves forming a complex mandrel and giving it a metallic and/or nonmetallic coating or coatings by any of a variety of techniques. The mandrel can then be removed by appropriate chemical or physical means, leaving a microtube structure having an axial profile consisting of repeat units duplicating those on the mandrel. One technique for forming the complex mandrel consists of drawing a single core fiber (or bundle of core fibers) through a confining orifice. The fiber is held with minimal constraint (typically by friction), so that no breakage takes place as it is drawn through the orifice. However, enough constraint exists so that torque applied tangentially by another overwrapping fiber (or fibers) as it is being wound around the core fiber does not cause the core fiber to slip in the direction of applied torque. Moreover, the overwrapping fiber must be wound sufficiently close to the constraining orifice that twisting of the core fiber in the direction of torque is minimized to such an extent that unwinding, or "backlash" does not occur when constraining forces are removed at the end of winding.
Abstract:
A micro mechanical component of the present invention comprises a base, and at least one drive portion supported on the base and relatively driving to the base, in which the drive portion is formed from a diamond layer. Thus, because the drive portion has excellent mechanical strength and modulus of elasticity, the operational performance can be greatly improved as a micro mechanical component processed in a fine shape, from the conventional level. Further, because the drive portion exhibits excellent device characteristics under severe circumstances, the range of applications as a micro mechanical component can be widely expanded from the conventional range.