Abstract:
A novel porous film (3) is disclosed comprising a network of silicon columns in a continuous void which may be fabricated using high density plasma deposition at low temperatures, i.e., less than about 250 DEG C. This silicon film is a two-dimensional nano-sized array of rodlike columns. This void-column morphology can be controlled with deposition conditions and the porosity can be varied up to 90 %. The simultaneous use of low temperature deposition and etching in the plasma approach utilized, allows for the unique opportunity of obtaining columnar structure, a continuous void, and polycrystalline column composition at the same time. Unique devices may be fabricated using this porous continuous film by plasma deposition of this film on a glass, metal foil, insulator or plastic substrates (5).
Abstract:
According to the invention, the cover (13) of the inventive sensor is made of a first layer (32) (deposition layer) which is transparent to an etching to reaction products and has a hermetically sealed second layer (34) (sealing layer) located thereover. In the method according to the invention, at least the sensor chamber (28) is located in the base wafer (11) is filled with an oxide (30), in particular CVD oxide or porous oxide after a structure (26) has been established. The sensor chamber (28)is covered with a first layer (32) in particular a polysilicon layer which is or has been made transparent to the etching medium and the reaction products (deposition layer). The oxide (30) in the sensor chamber (28) is removed by an etching medium which etches through the deposition layer (32). A second layer (34) (sealing layer) is subsequently applied to the deposition layer (32) which hermetically seals the sensor chamber (28). Said second layer is in particular made of a metal or an insulator.
Abstract:
An example provides a method including sputtering a metal catalyst onto a substrate, exposing the substrate to a solution that reacts with the metal catalyst to form a plurality of pores in the substrate, and etching the substrate to remove the plurality of pores to form a recess in the substrate.
Abstract:
A microelectromechanical system (MEMS) device includes a high density getter. The high density getter includes a silicon surface area formed by porosification or by the formation of trenches within a sealed cavity of the device. The silicon surface area includes a deposition of titanium or other gettering material to reduce the amount of gas present in the sealed chamber such that a low pressure chamber is formed. The high density getter is used in bolometers and gyroscopes but is not limited to those devices.
Abstract:
Etching islands are formed on a first face of a substrate and a second face of the substrate non-parallel to the first face. The first face and the second face of the substrate are concurrently exposed to a solution that reacts with the etching islands to concurrently form porous regions extending into the first face and the second face.
Abstract:
A bonded device having at least one porosified surface is disclosed. The porosification process introduces nanoporous holes into the microstructure of the bonding surfaces of the devices. The material property of a porosified material is softer as compared to a non-porosified material. For the same bonding conditions, the use of the porosified bonding surfaces enhances the bond strength of the bonded interface as compared to the non-porosified material.
Abstract:
A vacuum-cavity-insulated flow sensor and related fabrication method are described. The sensor comprises a porous silicon wall with numerous vacuum-pores which is created in a silicon substrate, a porous silicon membrane with numerous vacuum-pores which is surrounded and supported by the porous silicon wall, and a cavity with a vacuum-space which is disposed beneath the porous silicon membrane and surrounded by the porous silicon wall. The fabrication method includes porous silicon formation and silicon polishing in HF solution.
Abstract:
A bonded device having at least one porosified surface is disclosed. The porosification process introduces nanoporous holes into the microstructure of the bonding surfaces of the devices. The material property of a porosified material is softer as compared to a non-porosified material. For the same bonding conditions, the use of the porosified bonding surfaces enhances the bond strength of the bonded interface as compared to the non-porosified material.
Abstract:
A method for manufacturing a micromechanical component and the micromechanical component produced thereby. This component is preferably a diaphragm or a diaphragm layer which is independently produced for the purpose of subsequent assembly with other components.
Abstract:
A method for producing a semiconductor component includes forming an n-doped layer in a p-doped layer of the semiconductor component, wherein the n-doped layer comprises at least one of: a sieve-like layer or a network-like layer. The method also includes porously etching the p-doped layer between the material of the n-doped layer to form a top electrode, and forming a cavity below the n-doped layer.