Abstract:
A method for fabricating high performance vertical and horizontal electrical connections in a three dimensional semiconductor structure. A dielectric film is imprinted with a stamp pattern at high vacuum and with precise temperature and stamping pressure control. The stamp pattern may be formed on a substrate using semiconductor fabrication techniques. After the dielectric film is stamped, residual dielectric film is removed to allow access to an underlying layer. Via and trench regions formed within the dielectric film by stamping are then metalized to provide the high performance interconnections. Multiple layers of interconnections in the three dimensional structure are provided by stacking layers of stamped and metalized dielectric films on top of each other.
Abstract:
A method of making microstructures having re-entrant or doubly re-entrant topology includes forming a mold defining the negative surface features of the re-entrant or doubly re-entrant topology that is to be formed. In one embodiment, a soft or flowable material is formed on a first substrate and the mold is contacted with the same to form a solid, now positive surface having the re-entrant or doubly re-entrant topology. The mold is then released from the first substrate. The microstructures are secured to a second, different substrate, and the first substrate is removed. Any residual microstructure material located between adjacent microstructures may be removed to form the separate microstructures on the second substrate. The second substrate may be thin and flexible any manipulated into useful or desired shapes having the microstructures on one side thereof.
Abstract:
Disclosed herein is a platen arrangement for use in fabricating embossed or bonded. The platen arrangement comprises first and second pressure plates configured to be pressed together to emboss a substrate or bond two substrates positioned therebetween. Each pressure plate has a working surface comprising a recess configured to removably receive an insert comprising a planar substrate contact surface having a size and shape that is substantially the same as the size and shape of the substrate and an insert retainer for releasably retaining the insert in the recess. When the two pressure plates are brought together the inserts are mutually aligned and the substrate contact surface of each insert contacts the substrate to apply pressure thereto.
Abstract:
Method for producing a microfluidic device comprising a step in which a stamp made of elastomeric material is used for printing a photo-curable and/ or heat-curable liquid disposed on a support.
Abstract:
Described herein are methods for making microfluidic devices comprising glass or glass-containing materials, wherein the methods have decreased cost and/or improved dimensional properties over similar formed glass articles produced using current techniques. In particular, a first piece of rigid, non-stick material is provided, having a patterned molding surface; a first amount of a glass-containing composition is provided; the first amount of glass-containing composition is contacted with the patterned molding surface and pressed between the patterned molding surface and a second surface; the piece of rigid non-stick material and the first amount of glass-containing composition are heated together sufficiently to soften the amount glass-containing composition such that the patterned molding surface is replicated in the first amount of glass-containing composition, forming a formed glass- containing article; at least a portion of the formed glass-containing article is sealed to create a microfluidic device having at least one fluidic passage therethrough.
Abstract:
Procédé de fabrication d'un dispositif microfluidique comportant une étape dans laquelle on utilise un timbre en un matériau élastomérique pour imprimer un liquide photodurcissable et/ou thermodurcissable placé sur un support.
Abstract:
A method for providing a locally rough surface which is spatially structured on micrometric and/or nanometric scale and is formed by a substrate, so as to obtain a product. The method comprises the steps of flattening and/or smoothing the rough substrate in preset regions.
Abstract:
A method for fabricating high performance vertical and horizontal electrical connections in a three dimensional semiconductor structure. A dielectric film is imprinted with a stamp pattern at high vacuum and with precise temperature and stamping pressure control. The stamp pattern may be formed on a substrate using semiconductor fabrication techniques. After the dielectric film is stamped, residual dielectric film is removed to allow access to an underlying layer. Via and trench regions formed within the dielectric film by stamping are then metalized to provide the high performance interconnections. Multiple layers of interconnections in the three dimensional structure are provided by stacking layers of stamped and metalized dielectric films on top of each other.
Abstract:
The present invention is directed towards a method and means for molecularly patterning a surface to promote the patterned attachment of a target adherent. In some preferred embodiments the target adherent is a biological cell, but it can more generally be a biological or chemical species for which attachment at specific sites is desired. The method generally involves using a stamp to microcontact print a first type of molecule on the surface. With the stamp remaining in situ, the process then involves fluidic patterning of a second type of molecule through selected openings defined by selected recesses in the stamp and the surface itself. The second type of molecule should have an adhesion property relative to the target adherent that is complementary to that of the first type of molecule. The stamp is removed only after both the first and second types of molecules have been transferred to the surface.
Abstract:
The invention relates to a device comprising a base substrate(700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from said component (702). It also comprises spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via said spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) comprises vias (710) comprising metal for providing electrical connection through said capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.