Abstract:
The present invention relates to a method of fabricating a membrane having a tapered pore and comprising (n+2) polymeric layers, wherein said tapered pore is formed by (n+2) apertures of different diameter within said (n+2) polymeric layers, n being an integer from 0 to 10, said n+2 apertures being aligned with each other to form said tapered pore.
Abstract:
A micromechanical component with a substrate and a functional element is proposed, wherein the functional element has a functional surface with an antistick layer applied at least in regions and serving for reducing surface adhesive forces, wherein the antistick layer is furthermore stable with respect to a temperature of above 800 °C.
Abstract:
The invention relates to a method of producing a stacked structure. The inventive method comprises the following steps consisting in: a) using a first plate (1) which is, for example, made from silicon, and a second plate (5) which is also, for example, made from silicon, such that at least one of said first (1) and second (5) plates has, at least in part, a surface (2; 7) that cannot bond to the other plate; b) providing a surface layer (3; 8), which is, for example, made from silicon oxide, on at least one part of the surface (2) of the first plate and/or the surface (7) of the second plate (5); and c) bonding the two plates (1; 5) to one another. The aforementioned bonding incompatibility can, for example, result from the physicochemical nature of the surface or of a coating applied thereto, or from a roughness value (r'2, r'7) which is greater than a pre-determined threshold. The invention also relates to a stacked structure produced using the inventive method.
Abstract:
In various embodiments of the invention, a regenerating protective coating is formed on at least one surface of an interior cavity of a MEMS device 80. Particular embodiments provide a regenerating protective coating 170 on one or more mirror surfaces of an interferometric light modulation device, also known as an iMoD in some embodiments. The protective coating can be regenerated through the addition of heat or energy to the protective coating.
Abstract:
An electret condenser includes a fixed film 110 including a conductive film 118 to be an upper electrode, a vibrating film 112 including a lower electrode 104 and a silicon oxide film 105 to be an electret film, and a silicon oxide film 108 provided between the fixed film 110 and the vibrating film 112 and including an air gap 109. Respective parts of the fixed film 110 and the vibrating film 112 exposed in the air gap 109 are formed of silicon nitride films 106 and 114.
Abstract:
The invention relates to a method of producing a stacked structure. The inventive method comprises the following steps consisting in: a) using a first plate (1) which is, for example, made from silicon, and a second plate (5) which is also, for example, made from silicon, such that at least one of said first (1) and second (5) plates has, at least in part, a surface (2; 7) that cannot bond to the other plate; b) providing a surface layer (3; 8), which is, for example, made from silicon oxide, on at least one part of the surface (2) of the first plate and/or the surface (7) of the second plate (5); and c) bonding the two plates (1; 5) to one another. The aforementioned bonding incompatibility can, for example, result from the physicochemical nature of the surface or of a coating applied thereto, or from a roughness value (r'2, r'7) which is greater than a pre-determined threshold. The invention also relates to a stacked structure produced using the inventive method.
Abstract:
The invention relates to measuring devices used for the measuring of acceleration, and specifically to capacitive acceleration sensors. The capacitive acceleration sensor according to the present invention comprises a pair of electrodes composed of a movable electrode ( 4 ) and a stationary electrode ( 5 ), and, related to the pair of electrodes, an isolator protrusion having a special coating. The invention provides an improved, more durable sensor structure, which withstands wear caused by overload situations better than earlier structures.
Abstract:
A method for coating free-standing micromechanical devices (302) using spin-coating. A solution with high solids loading but low viscosity can penetrate the free areas (304) of a micromachined structure. Spinning this solution off the wafer or die results in film formation over the devices without the expected damage from capillary action. If an organic polymer is used as the solid component, the structures may be re-released by a traditional ash process. This method may be used as a process in the manufacture of micromechanical devices to protect released and tested structures, and to overcome stiction-related deformation of micromechanical devices associated with wet release processes.
Abstract:
Verfahren zum Herstellen eines mikromechanischen Sensors (100), aufweisend die Schritte: Bereitstellen eines MEMS-Wafers (10) mit einem MEMS-Substrat (1), wobei im MEMS-Substrat (1) in einem Membranbereich (3a) eine definierte Anzahl von Ätzgräben ausgebildet wird, wobei der Membranbereich in einer ersten Siliziumschicht (3), die definiert beabstandet vom MEMS-Substrat (1) angeordnet ist, ausgebildet wird; Bereitstellen eines Kappenwafers (20); Bonden des MEMS-Wafers (10) mit dem Kappenwafer (20); und Ausbilden eines Medienzugangs (6) zum Membranbereich (3a) durch Aufschleifen des MEMS-Substrats (1).