Abstract:
A system for measuring backscattered light from a sample is given. Light is output from a light source towards a rotating mirror, and then reflected by the rotating mirror towards the sample. The sample reflects backscattered light back towards the rotating mirror, which, having moved during the time it took for the light to propagate from the mirror to the sample and back, reflects the backscattered light to a detector located at a physical separation from the light source. The detected backscattered light may be analyzed to determine various properties of the sample.
Abstract:
Disclosed are apparatus, kits, methods, and systems that include a radiation source configured to direct radiation to a sample; a detector configured to measure radiation from the sample; an electronic processor configured to determine infotmation about the sample based on the measured radiation; a housing enclosing the source, the detector, and the electronic processor, the housing having a hand-held form factor; an arm configured to maintain a separation between the sample and the housing, the arm including a first end configured to connect to the housing and a second end configured to contact the sample; and a layer positioned on the second end of the arm, the layer being configured to contact the sample and to transmit at least a portion of the radiation from the sample to the detector.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable polarization a polarizing relay assembly arranged to selectively permit the scattered light having a selected polarization orientation to pass along a detector optical axis to a light detection unit in the detection subsystem. They system also features a collector output width varying subsystem for varying the width of an output slit in response to changes in the location of the location scanned on the workpiece.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The optical collection and detection system features, in the front quartersphere, a light channel assembly for collecting light reflected from the surface of the workpiece, and a front collector and wing collectors for collecting light scattered from the surface, to greatly improve the measurement capabilities of the system. The light channel assembly has a switchable edge exclusion mask and a reflected light detection system for improved detection of the reflected light.
Abstract:
A liquid sample is irradiated with excitation light and measurement light, and a measurement position at which a traveling path of the measurement light passes through an excitation section of the excitation light in the sample is changed while the sample is being irradiated with the excitation light and the measurement light. Then, the phase change of the measurement light is measured for each measurement by optical interferometry on the basis of the measurement light after the measurement light passes through the sample. The measurement position is changed by, for example, scanning the excitation light, moving the sample, moving a lens that collects the excitation light in the sample so as to change the light-collecting position (focal position) in the sample, etc.
Abstract:
In one embodiment, a surface analyzer system comprises a radiation targeting assembly to target a radiation beam onto a surface; and a scattered radiation collecting assembly that collects radiation scattered from the surface. The radiation targeting assembly generates primary and secondary beams. Data collected from the reflections of the primary and secondary beams may be used in a dynamic range extension routine, alone or in combination with a power attenuation routine.
Abstract:
A liquid sample is irradiated with excitation light and measurement light, and a measurement position at which a traveling path of the measurement light passes through an excitation section of the excitation light in the sample is changed while the sample is being irradiated with the excitation light and the measurement light. Then, the phase change of the measurement light is measured for each measurement by optical interferometry on the basis of the measurement light after the measurement light passes through the sample. The measurement position is changed by, for example, scanning the excitation light, moving the sample, moving a lens that collects the excitation light in the sample so as to change the light-collecting position (focal position) in the sample, etc.
Abstract:
In case of irradiating a sample with laser beam, dispersing light emitted from the sample to a spectrum, and fetching and detecting from a wavelength band extraction portion light in at least one band area from the dispersed spectrum, when at least one of a plurality of optical elements arranged between the sample and the dispersive element is switched, a positional relationship between the wavelength band extraction portion and a spectrum image formation position which is displaced in a dispersion direction due to a change in angle of light entering the dispersive element.