Abstract:
A flat panel display device (50) includes magnetic field emitter elements (52). The emitter elements (52) include a dopant ferromagnetic material (56) used to produce a permanent magnet in the emitter elements (52). The permanent magnet in the emitter elements (52) generates a magnetic field (B) used to focus the electrons emitted from the tips of the emitter elements (52). The flat panel display device (50) further includes a voltage source (70) for producing an electric field (E) between a cathode electrode (54) having a gate electrode (58), and an anode electrode (60) having phosphor regions (62) disposed between black matrix regions (61). The magnetic field (B) provides a restoring magnetic force to collimate the electrons toward the phosphor regions (62) to produce a high brightness display.
Abstract:
A multi type electron emission element comprises a plurality of electrodes formed on a deposition surface of an insulating material and each having a conical portion of a single crystal, an insulating layer formed on the deposition surface and having openings respectively centered on the conical portions, and a deriving electrodes, part of which is formed near at least the conical portions, the deriving electrode being formed on the insulating layer.
Abstract:
Described is a lateral field emission device emitting electrons in parallel with respect to a substrate. Electron emission materials having a predetermined thickness are arranged in a direction with respect to the substrate on a supporting portion. An anode is disposed on a side portion of the substrate, the anode corresponding to the electron emission materials.
Abstract:
The present invention discloses an electrode material that eases electron injection and does not react with contact substances. The structure of the material includes a conductive substrate plane on the top of which an emissive material is coated. The emissive coating bonds strongly with the substrate plane. The emissive material is of low work function and high chemical stability.
Abstract:
An electron-emitting device includes an electroconductive member and a lanthanum boride layer on the electroconductive member and further includes an oxide layer between the electroconductive member and the lanthanum boride layer. The oxide layer can contain a lanthanum element. The lanthanum boride layer can be overlaid with a lanthanum oxide layer.
Abstract:
An electron emission source includes a carbon-based material and resultant material formed by curing and heat treating at least one silicon-based material represented by formula (1), (2), and/or (3) below: where R1 through R22 are each independently a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C1-C20 alkoxy group, a substituted or unsubstituted C1-C20 alkenyl group, a halogen atom, a hydroxyl group or a mercapto group, and m and n are each integers from 0 to 1,000. An electron emission device and an electron emission display device include the electron emission source. A composition for forming electron emission sources includes the carbon-based material and the silicon-based material. A method of forming the electron emission source includes applying the composition to a substrate; and heat treating the applied composition. The adhesion between the electron emission source including the cured and heat treated resultant material of the silicon-based material and a substrate is excellent, and thus the reliability of the electron emission device including the cured and heat treated resultant material of the silicon-based material can be enhanced.
Abstract:
This invention relates to a process for fabricating ZnO nanowires with high aspect ratio at low temperature, which is associated with semiconductor manufacturing process and a gate controlled field emission triode is obtained. The process comprises providing a semiconductor substrate, depositing a dielectric layer and a conducting layer, respectively, on the semiconductor substrate, defining the positions of emitter arrays on the dielectric layer and conducting layer, depositing an ultra thin ZnO film as a seeding layer on the substrate, growing the ZnO nanowires as the emitter arrays by using hydrothermal process, and etching the areas excluding the emitter arrays, then obtaining the gate controlled field emission triode.
Abstract:
A tip of an electron beam source includes a core carrying a coating. The coating is formed from a material having a greater electrical conductivity than a material forming the surface of the core.
Abstract:
The invention provides a method for producing a conductive film that generates an electric current via field emission of electrons, which method comprises incorporating an electrically conductive material into a thermoplastic polymer. The invention also provides a conductive film and a method for generating an electric current via field emission of electrons.
Abstract:
A water-based composition is used to form an electron and includes a carbonaceous compound, a silicate compound, and water. The electron emitter includes a carbonaceous compound and a silicate compound and is prepared using the water-based composition, and an electron emission device includes the electron emitter. The water-based composition that is used to form an electron emitter is suitable for forming a distinctive pattern, and the electron emitter prepared using the water-based composition has very small residual carbon content.