Abstract:
A micro device transfer head array and method of forming a micro device transfer array from an SOI substrate are described. In an embodiment, the micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include a silicon interconnect and an array of silicon electrodes electrically connected with the silicon interconnect. Each silicon electrode includes a mesa structure protruding above the silicon interconnect. A dielectric layer covers a top surface of each mesa structure.
Abstract:
Methods and systems are provided for the split and separation of a layer of desired thickness of crystalline semiconductor material containing optical, photovoltaic, electronic, micro-electro-mechanical system (MEMS), or optoelectronic devices, from a thicker donor wafer using laser irradiation.
Abstract:
The present invention relates to thin membranes (such as graphene windows) and methods of aligned transfer of such thin membranes to substrates. The present invention further relates to devices that include such thin membranes.
Abstract:
The present invention relates to a method of transferring a silicon based layer 101 a onto a polymer film 103 that comprises the steps of: preparing an initial substrate 105a; depositing a silicon-based layer 101 a on the initial substrate 105a; etching the silicon-based layer to form desired micro-nano structure; depositing a TiN layer 111 by RF sputtering; depositing a tungsten layer 109; etching back the tungsten layer 109 to form a planarised surface exposing the TiN layer 111 on the top of the silicon-based layer; removing the exposed portions of TiN 111 off the silicon-based layer 101a, thus forming a planarised surface comprising the silicon-based layer 101a with at least one tungsten plug 109 formed therein; coating a polymer film 103 onto the planarised surface; releasing the initial substrate 105a from the other layers; and removing the at least one tungsten plug 109 and TiN layer 111.
Abstract:
Various novel lift-off and bonding processes (60, 80, 100) permit lift-off of thin film materials and devices (68), comprising InxGa1-xAsyP1-y where 0
Abstract:
An apparatus for sorting macromolecules includes a first chip including a channel formed in a first side of the first chip and having at least one monolithic sorting structure for sorting macromolecules from the sample fluid. A first set of vias formed in the first chip has openings in a second side of the first chip, the sample fluid being provided to the sorting structure through the first set of vias. A second set of vias formed in the first chip has openings in the second side for receiving macromolecules in the sample fluid greater than or equal to a prescribed dimension sorted by the sorting structure. A third set of vias formed in the first chip has openings in the second side for receiving macromolecules in the sample fluid less than the prescribed dimension. The apparatus includes first and second seals covering the first and second sides, respectively.
Abstract:
Aspects include a method of manufacturing a flexible electronic structure that includes a metal or doped silicon substrate. Aspects include depositing an insulating layer on a silicon substrate. Aspects also include patterning a metal on a silicon substrate. Aspects also include selectively masking the structure to expose the metal and a portion of the silicon substrate. Aspects also include depositing a conductive layer including a conductive metal on the structure. Aspects also include plating the conductive material on the structure. Aspects also include spalling the structure.
Abstract:
Provided are a manufacturing method of an inkjet print head, the inkjet print head and a drawing apparatus equipped with the inkjet print head. The manufacturing method includes: forming a separation assisting layer on a substrate; forming heating resistors, thin-film transistors and nozzles for ejecting liquid, on the separation assisting layer; separating the separation assisting layer from the substrate; forming a first heat-conductive layer on the opposite surface of the separation assisting layer from the nozzles; and forming an ink supply port for supplying ink to the nozzles from a first heat-conductive layer side of the inkjet print head.
Abstract:
The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias. Applications of the disclosed embodiments include tunable lasers, microphones, microspeakers, remotely-activated contact-less pressure sensors and the like.
Abstract:
A method of producing a chip package is described. A plurality of chips is provided on a first wafer. Each chip has a cavity which opens to a first main face of the chip. The cavities are filled or covered temporarily. The chips are then singulated. The singulated chips are embedded in an encapsulation material, and then the cavities are re-exposed.