Abstract:
In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials provide a strong, tough, stiff and lightweight implant. The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
Abstract:
Polycrystalline materials are prepared by electrodeposition of a precursor material that is subsequently heat-treated to induce at least a threefold increase in the grain size of the material to yield a relatively high fraction of ‘special’ low Σ grain boundaries and a randomized crystallographic texture. The precursor metallic material has sufficient purity and a fine-grained microstructure (e.g., an average grain size of 4 nm to 5 pm). The resulting metallic material is suited to the fabrication of articles requiring high mechanical or physical isotropy and/or resistance to grain boundary-mediated deformation or degradation mechanisms.
Abstract:
A method for electrodepositing a coating/free-standing layer on a workpiece in an electrolytic cell includes moving the workpiece and an anode applicator tool having a consumable anode insert relative to each other; anodically dissolving a metal from the insert and cathodically depositing the metal on the workpiece; providing flow of electrolyte solution through the insert to ensure that greater than 90% of the anodic reaction is represented by dissolution of the metal; recirculating collected electrolyte solution exiting the electrolytic cell through the insert; applying an electric current to the electrolytic cell; maintaining a concentration of the anodically dissolved metal within ±25% of each Ampere-hour per liter of electroplating solution; and creating a cathodic electrodeposit on the workpiece which includes the anodically dissolved metal, the chemical composition of the deposit varying by less than 25% in the deposition direction over a selected thickness of up to 25 microns of the deposit.
Abstract:
Grain-refined and amorphous metallic material based friction liners for braking devices as used, e.g., in motor vehicles such as cars, trucks, motorcycles, as well as bicycles and other applications requiring, at least at times, means for decelerating rotating parts are disclosed. Friction liners can have isotropic or anisotropic properties and the friction surfaces can optionally be rendered hydrophobic.
Abstract:
Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the CLTE of the metallic layer and the one of the substrate is mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
Abstract:
Recrystallized lead and lead alloy positive electrodes for lead acid batteries having an increased percentage of special grain boundaries in the microstructure, preferably to at least 50%, which have been provided by a process comprising steps of working or straining the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided. The amount of cold work or strain, the recrystallization time and temperature, and the number of repetitions of such steps are selected to ensure that a substantial increase in the population of special grain boundaries is provided in the microstructure, to improve resistance to creep, intergranular corrosion and intergranular cracking of the electrodes during battery service, and result in extended battery life and the opportunity to reduce the size and weight of the battery.
Abstract:
Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
Abstract:
Polycrystalline materials are prepared by electrodeposition of a precursor material that is subsequently heat-treated to induce at least a threefold increase in the grain size of the material to yield a relatively high fraction of 'special' low Σ grain boundaries and a randomized crystallographic texture. The precursor metallic material has sufficient purity and a fine-grained microstructure (e.g., an average grain size of 4 nm to 5 µm). The resulting metallic material is suited to the fabrication of articles requiring high mechanical or physical isotropy and/or resistance to grain boundary-mediated deformation or degradation mechanisms.
Abstract:
Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2nm to 5,000nm, a thickness between 25 micron and 5cm, and a hardness between 200VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
Abstract:
Fine-grained (average grain size 1nm to 1,000nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.