Abstract:
The object of the present invention is a biomimetic and zoosemiotic aerial vehicle incorporating sensors and means to detect and frighten off animals, its main characteristic being that it is equipped with a programmable automatic pilot. An object of the present invention is also the use of this vehicle in applications such as the control of certain plagues, in addition to the inspection of environmentally protected areas.
Abstract:
An aircraft (10) having a vertical takeoff and landing fight mode and a forward flight mode. The aircraft (10) includes an airframe (12) and a versatile propulsion system attached to the airframe (12). The versatile propulsion system includes a plurality of propulsion assemblies (26a-d). A flight control system (40) is operable to independently control the propulsion assemblies (26a-d). The propulsion assemblies (26a-d) are interchangeably attachable to the airframe (12) such that the aircraft (10) has a liquid fuel flight mode and an electric flight mode. In the liquid fuel flight mode, energy is provided to each of the propulsion assemblies (26a-d) from a liquid fuel. In the electric flight mode, energy is provided to each of the propulsion assemblies (26a-d) from an electric power source.
Abstract:
L'invention concerne un drone à voilure tournante (10) comprenant un corps de drone (12) comprenant une carte électronique contrôlant le pilotage du drone, quatre bras de liaison (16) comprenant fixé solidairement un bloc propulseur (14). Les bras de liaison (16) forment des ailes portantes.
Abstract:
The disclosure thus relates to a light unmanned vertical takeoff aerial vehicle (1) which comprises at least two fixed coplanar propulsion devices (7) and at least one wing (3) providing the drone (1) with lift. The coplanar propulsion devices (7) and the wing (3) are each arranged on the framework (10) of the drone (1) such that the plane of the chord of the profile of the wing (3) is substantially parallel to the plane defined by the two coplanar propulsion devices (7). The wing (3) is capable of a pivoting movement with respect to the framework (10) about an axis parallel to the pitch axis of the drone (1). The disclosure also relates to a method for controlling a light unmanned aerial vehicle (1) like the one described hereinabove, which involves a step of controlling the orientation of the wing (3), which uses at least one parameter pertaining to the flight of the drone (1).
Abstract:
This disclosure is generally directed to a High Speed vertical takeoff and landing (VTOL) aircraft that includes fixed wing flight capabilities. The High Speed VTOL aircraft may include at least two thrust producing rotors located equidistant from a longitudinal axis of the aircraft on a main wing, and at least two thrust producing rotors located equidistant from a longitudinal axis of the aircraft on a vertical wing. The rotors may be driven by electric motors. However, other power sources may be used such as combustion or hybrid engines. By adjusting the speed and/or the pitch of the rotors, the aircraft can transition from a vertical flight configuration to a horizontal flight configuration and back.
Abstract:
A propulsion system is provided, including a first propulsion unit, a second propulsion unit, a rotor, a first coupling and a second coupling. The first propulsion unit is configured for being fixedly mounted to an airframe. The rotor is configured for being pivotably mounted with respect to the first propulsion unit to allow selectively pivoting of the rotor from a horizontal mode to a vertical mode. The first coupling is configured for selectively coupling and decoupling the rotor with respect to the first propulsion unit. The second coupling is configured for selectively coupling and decoupling the rotor with respect to the second propulsion unit, independently of the first coupling.
Abstract:
An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method of assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises an elongated wing structure having an elongated axis along the longest dimension of the elongated wing structure, the elongated wing structure having a middle location at a substantially halfway point; a connecting structure extending substantially perpendicularly from the elongated wing structure, the connecting structure being offset from the middle location of the elongated wing structure at a first position along the elongated axis; and at least three sets of propellers, wherein at least two sets of propellers are mounted on the connecting structure, and wherein at least one set of propellers is mounted at a second position offset from the middle location in an opposite direction away from the connecting structure.
Abstract:
The invention relates to an unmanned aircraft (10), the drive (12) of which comprises an internal combustion engine (28) designed as a diesel and/or kerosene engine and having a charging device (30) for charging the engine. In particular a hybrid drive (32), more especially a parallel hybrid drive, is provided as the drive (12).
Abstract:
The present invention provides an Unmanned Aircraft System, including an integrated unmanned aerial vehicle and all related components and subsystems that can be packaged and transported as a kit, and customized to fit desired mission profiles, and easily repaired by replacement of damaged components or subsystems. The present invention further provides unmanned aircraft system components and subsystems that facilitate low power and low noise operation, and extended flight times.