Abstract:
An adhesive film is provided that can ensure reliable continuity even if a filler and a binder composition are not sufficiently removed from between a wiring board and a semiconductor chip during flip-chip mounting of the semiconductor chip. The adhesive film is formed from a binder composition including an epoxy compound, a curing agent, and the filler. The amount of a filler contained with respect to a total amount of an epoxy compound, a curing agent, and the filler is 10 to 70 mass %. The filler includes first non-conductive inorganic particles having an average particle size of 0.5 to 1.0 μm, and conductive particles formed by subjecting second non-conductive inorganic particles having an average particle size of 0.5 to 1.0 μm. An average particle size of the conductive particles does not exceed 1.5 μm. The conductive particles is contained in an amount of 10 to 60 mass % of the filler.
Abstract:
The present invention discloses an electroconductive particle comprising (a) a polymer microparticle, and (b) a graphene coating layer grafted on the polymer microparticle, which has improved long-term stability of the conductivity, surface conductivity, durability, and thermal resistance, and is applicable for producing an anisotropic conductive film used for packaging electronic devices.
Abstract:
Anisotropic conductive adhesive has conductive particles dispersed in adhesive and includes hard particles having conductivity, a resin layer that coats the hard particles and a conductive layer that coats the resin layer. A connection structure electrically connects electrodes to each other with the anisotropic conductive adhesive. A connection method includes the steps of causing the anisotropic conductive to intervene between electrodes, applying pressure to the anisotropic conductive adhesive and allowing the adhesive to be solidified.
Abstract:
Provided is an FPC, which comprises an insulating layer 2, wiring layers 3 and 4 laminated above and under the insulating layer 2, and a layer connection for connecting the wiring layers 3 and 4 electrically. The layer connection is constituted to comprise: a conductor press-fit hole 5 of a cone shape extending through the insulating layer 2 and the upper and lower wiring layers 3 and 4 and expanded to the side of one wiring layer 3; and a conductor 6 filled and press-fitted without any clearance in the conductor press-fit hole such that it is jointed to the wiring upper layer 3 deformed into the cone shape of the conductor press-fit hole 5, and is protruded from the other wiring lower layer 4 to have its surface partially coated and jointed. As a result, the contact area between the wiring layers 3 and 4 and the conductor 6 filled in the conductor press-fit hole 5 can be enlarged to retain the contact strength between the wiring layers 3 and 4 and the conductor 6 sufficiently thereby to provide a high connection reliability for the layer connection.
Abstract:
A plasma display device may include a plasma display panel, a driving circuit portion for driving the plasma display panel, a connecter for electrically connecting electrodes of the plasma display panel with the driving circuit portion, and an interconnecter for electrically connecting the connecter with the plasma display panel. The interconnecter may include an adhesive layer, a plurality of conductive pellets, and a plurality of non-conductive pellets dispersed in the adhesive layer. The conductive pellets may be positioned substantially within a first region where the wiring of the connecter overlaps the electrodes of the plasma display panel. The non-conductive pellets may be positioned substantially at least at a second region other than the first region in the adhesive layer.
Abstract:
In an electronic component built-in substrate of the present invention, an electronic component is mounted on a mounted body having a first wiring layer, the electronic component is embedded in an insulating layer, a conductive ball is arranged to pass through the insulating layer and connected electrically to the first wiring layer, a second wiring layer connected electrically to the conductive ball is formed on the insulating layer, and the first wiring layer and the second wiring layer are interlayer-connected via the conductive ball.
Abstract:
A wiring board comprises a substrate; a resin layer which is selectively formed on one main surface of the substrate and has fine metal particles contained or adhered to its surface; and a conductive metal layer which is formed on the resin layer with the fine metal particles interposed between them.
Abstract:
A semiconductor device including: a semiconductor chip; a wiring board on which the semiconductor chip is mounted; and a plurality of external terminals provided on the wiring board. The external terminals include at least one first external terminal and two or more second external terminals. The first external terminal is formed of a soldering material. Each of the second external terminals includes a soldering material and a plurality of particles formed of a resin and dispersed in the soldering material. The second external terminals are a pair of external terminals among the external terminals, and a distance between the pair of external terminals is greater than a distance between any other pair of external terminals among the external terminals.
Abstract:
A conductive particle 30 which can be used for connecting a variety of adherends is provided, and the conductive particle 30 includes a resin particle 31, a first conductive particle disposed around the resin particle 31, a first resin coating 25 disposed on the periphery thereof and softer than the resin particle 31, and a second conductive thin film 36 disposed therearound; and if the surface part of, for example, an electrode 13 of an adherend that is to be connected is hard, a first resin coating 35 and the second conductive thin film 36 are destroyed by pressure to bring the second conductive thin film 36 in contact with the electrode 13 and a metal wiring 17. If the surface part of the electrode 13 is soft, the second conductive thin film on the surface side comes in contact with the electrode 13, which makes it possible for the particle to be used regardless of the surface state of an adherend, in other words, be used for connecting a variety of adherends
Abstract:
This invention provides a conductive fine particle having an ability of relaxing the force applied to a circuit of a substrate or the like. A conductive fine particle, comprising a core fine particle made of resin with its surface covered with at least one metal layer, wherein the resin has a coefficient of linear expansion of from 3×10−5 to 7×10−5 (1/K).