Abstract:
A liquid crystal device and a manufacturing method thereof are described. The device comprises a liquid crystal panel and an auxiliary panel formed with an IC circuit for supplying driving signals to the liquid crystal device. The auxiliary substrate is separately provided with the circuit and the function thereof is tested in advance of the assembling with the liquid crystal panel. By this procedure, the yield is substantially improved.
Abstract:
A conductive adhesive which can withstand exposure to high temperature during a solder reflow process comprises an adhesive resin and a plurality of conductive particles mixed in the adhesive resin. The conductive particles each include a core formed of a synthetic resin and a conductive material coated around the core. The cores are each formed of a material having a thermal deformation temperature higher than that of the adhesive resin, and more preferably formed of a material having a thermal deformation temperature (18.6 kg/cm2) higher than 120° C. as measured according to the measuring method defined in the ASTM standard D648, and still more preferably formed of a material selected from the group consisting of polyphenylene oxide, polysulfone, polycarbonate, polyacetal, and polyethylene terephthalate.
Abstract translation:在回流焊接过程中可承受高温暴露的导电粘合剂包括粘合树脂和粘合树脂中混合的多个导电颗粒。 导电颗粒各自包括由合成树脂形成的芯和围绕芯部涂覆的导电材料。 芯部由热变形温度高于粘合剂树脂的材料形成,更优选由热变形温度(18.6kg / cm 2)高于120℃的材料形成,如根据 测定方法在ASTM标准D648中定义,并且还更优选由选自聚苯醚,聚砜,聚碳酸酯,聚缩醛和聚对苯二甲酸乙二醇酯的材料形成。
Abstract:
A conductive particle used for an anisotropic conductive adhesive provides an anisotropic conductive bonding between terminal electrodes without deforming a wiring pattern or the terminal electrode of a circuit board. A conductive layer is formed on a surface of a core particle of the conductive particle. The conductive particle has a yield point within a range of degree of deformation from 5% to 40% so that a modulus of compressive deformation of the conductive particle drastically increases at the yield point.
Abstract:
An integrated circuit assembly has pads of a chip electrically connected to pads of a substrate with rolling metal balls. A pliable material bonds the balls in movable contact with pads of the chip and substrate. Because the balls are relatively free to move, thermal expansion differences that would ordinarily cause enormous stresses in the attached joints of the prior art, simply cause rolling of the balls of the present invention, avoiding thermal stress altogether. Reliability of the connections is substantially improved as compared with C4 solder bumps, and chips can be safely directly mounted to such substrates as PC boards, despite substantial thermal mismatch.
Abstract:
An integrated circuit assembly has pads of a chip electrically connected to pads of a substrate with rolling metal balls. A pliable material bonds the balls in movable contact with pads of the chip and substrate. Because the balls are relatively free to move, thermal expansion differences that would ordinarily cause enormous stresses in the attached joints of the prior art, simply cause rolling of the balls of the present invention, avoiding thermal stress altogether. Reliability of the connections is substantially improved as compared with C4 solder bumps, and chips can be safely directly mounted to such substrates as PC boards, despite substantial thermal mismatch.
Abstract:
An isotropically electroconductive resin film material produced by sticking electroconductive particles to a sticking layer formed on a support and fixing therein, and filling a film-forming resin incompatible with the sticking material among the electroconductive particles, has electroconductivity only in the film thickness direction via the electroconductive particles uniformly dispersed in the plane direction, and is suitable for electrically connecting oppositely placed circuits and fine electrodes of a plurality of electronic parts, and for testing electronic parts.
Abstract:
In an anisotropic conductive film, ultraresilient alloy particles, playing the role of conductive particles, are dispersed in a resin. With this configuration, the ACF reduces line defects to occur on a liquid crystal display panel and attributable thereto to one-tenth.
Abstract:
A composition comprising (A) an epoxy resin type adhesive, (B) particles obtained by coating a nucleus of a curing agent with a film, (C) pressure-deformable electroconductive particles having an average particle size larger than that of the particles (B), and if necessary (D) rigid particles having an average particle size smaller than that of the particles (B). Also, a method of using for the composition connecting circuits electrically or connecting a semiconductor chip to a wiring substrate.
Abstract:
A conductive connecting structure for electrically connecting first and second electronic parts each having a plurality of connecting terminals arranged at a small pitch is disclosed. A conductive bonding agent is interposed between the plurality of connecting terminals of the first and second electronic parts. The conductive bonding agent is prepared by mixing a plurality of fine connecting particles in an insulating adhesive. Each fine connecting particle is designed such that a fine conductive particle or a fine insulating particle with a plating layer formed on its surface is covered with an insulating layer consisting of a material which is broken upon thermocompression bonding. When the conductive bonding agent is subjected to thermocompression bonding between the connecting terminals of the first and second electronic parts, portions of the fine connecting particles which are urged by the respective fine connecting terminals are broken. However, the insulating layers of the fine connecting particles in the planar direction are not broken and remain as they are. In this conductive connecting structure, even if the ratio of fine connecting particles is increased, and adjacent fine connecting particles are brought into contact with each other, insulating properties can be kept in the planar direction, while conduction is obtained only in the direction of thickness.
Abstract:
Excellent connection of conductors with high reliability can be accomplished by using an adhesive composition or flim capable of exhibiting anisotropic-electroconductivity comprising electroconductive particles comprising polymeric core materials coated with thin metal layers, and electrically insulating adhesive component.