Abstract:
An electron beam apparatus comprises an electron gun having a cathode consisting of single-crystal lanthanum hexaboride and a plurality of electron lenses for projecting the cross-over image of an electron beam emitted from the electron gun as a reduced-scale image onto a sample. It further comprises a circuit for measuring the brightness and shape of the cross-over image projected onto the sample and the emission pattern of the electron beam emitted from the electron gun, and a circuit for applying a bias voltage, with which the cross-over image has a desired brightness and is round and the emission pattern is anisotropic, to the electron gun.
Abstract:
An electron-beam apparatus is provided with an electrode for intercepting a portion of the electron beam so as to achieve automatio cathode temperature control. The filament current is controlled by means of a signal derived from this interception electrode.
Abstract:
A radiation dose control device for controlling an electron beam pulse delivered during a therapy session of IORT (Intra-Operative Radiation Therapy), comprising a PWM system configured to provide an electron injection at a DC voltage at each pulse of an input electron beam (FE) sent to the input of an electronic gun (G) of a linear accelerator or linac (AL), so that the output electron beam (FU) exiting said linac (AL) is highly stable, and so that a variation of the radiation dose of said output electron beam (FU) results only from the variation of the delivery time of said input electron beam (FE); said dose variation of the output electron beam (FU) is thus directly proportional to said delivery time of the input electron beam (FE).
Abstract:
An electron beam sterilizing device, comprises: an electron- generating filament; a beam-shaper; an output window; a high-voltage supply, capable of creating a high-voltage potential between the electron-generating filament and the output window, for acceleration of electrons; a high-voltage supply for driving current through the electron-generating filament; a control unit for controlling the operation of the electron beam sterilizing device. The device is characterized in that the electron beam sterilizing device has at least three operational states: - an OFF-state, where there is no drive current through the electron-generating filament, - an ON-state, where the electron-generating filament is kept at a temperature above the emission temperature so as to generate electrons for sterilization, and - a standby state, between the OFF-state and ON-state, where the electron- generating filament is kept at a predetermined temperature just below the emission temperature, wherein the control unit is able to control the device to assume the standby state.
Abstract:
A method for gapping a ferrite core (10) by coating the core with a stabilizing material (32), fracturing the core with a laser beam (44) thereby creating one or more gaps (47) in the cores magnetic field, optionally opening the fracture to obtain a desired inductance, and then sealing the core.
Abstract:
Systems and methods of controlling a proton beam in a proton therapy system, the system including a proton beam delivery system including at least one achromatic beamline having a first power setting to direct a proton beam having a first predetermined range of proton beam energies to a target treatment area, and a second power setting to direct a proton beam having a second predetermined range of proton beam energies to the target treatment area, and a power changing unit configured to control an energy level of the proton beam and a power setting of the at least one achromatic beamline such that the power changing unit changes the power setting of the at least one achromatic beamline between the first power setting and the second power setting based on changes in proton beam energy that occur within the first predetermined range of proton beam energies.
Abstract:
A plurality of field emission cathodes (601) generate an emission of electrons, wherein the emission of electrons is then controlled and focused using various electrodes (602, 603, 604) to produce an electron beam. Horizontal and vertical deflection techniques (605, 606, respectively), similar to those used within a cathode ray tube, operate to scan the individual electron beams onto portions of a phosphor screen (401) in order to generate images. The use of the plurality of field emission cathodes provides for a flatter screen depth than possible with a typical cathode ray tube.